(for PR #27494)

2025-02-24 08:32.09: New job: test owl-opt.0.0.1 with ocamlmod.0.1.0, using opam dev
                              from https://github.com/ocaml/opam-repository.git#refs/pull/27494/head (0def47e7b511023db693d6098b7284568d1f56f0)
                              on debian-12-ocaml-4.14/amd64

To reproduce locally:

cd $(mktemp -d)
git clone --recursive "https://github.com/ocaml/opam-repository.git" && cd "opam-repository" && git fetch origin "refs/pull/27494/head" && git reset --hard 0def47e7
git fetch origin master
git merge --no-edit 4022a684b64be8161a05cf897f492f8680792469
cat > ../Dockerfile <<'END-OF-DOCKERFILE'
FROM ocaml/opam:debian-12-ocaml-4.14@sha256:74114e6518f67eaaca9dfbd3a0a8e27123f8607d1ac62b00e945d9c187c96098
USER 1000:1000
WORKDIR /home/opam
RUN sudo ln -f /usr/bin/opam-dev /usr/bin/opam
RUN opam init --reinit -ni
RUN opam option solver=builtin-0install && opam config report
ENV OPAMDOWNLOADJOBS="1"
ENV OPAMERRLOGLEN="0"
ENV OPAMPRECISETRACKING="1"
ENV CI="true"
ENV OPAM_REPO_CI="true"
RUN rm -rf opam-repository/
COPY --chown=1000:1000 . opam-repository/
RUN opam repository set-url --strict default opam-repository/
RUN opam update --depexts || true
RUN opam pin add -k version -yn ocamlmod.0.1.0 0.1.0
RUN opam reinstall ocamlmod.0.1.0; \
    res=$?; \
    test "$res" != 31 && exit "$res"; \
    export OPAMCLI=2.0; \
    build_dir=$(opam var prefix)/.opam-switch/build; \
    failed=$(ls "$build_dir"); \
    partial_fails=""; \
    for pkg in $failed; do \
    if opam show -f x-ci-accept-failures: "$pkg" | grep -qF "\"debian-12\""; then \
    echo "A package failed and has been disabled for CI using the 'x-ci-accept-failures' field."; \
    fi; \
    test "$pkg" != 'ocamlmod.0.1.0' && partial_fails="$partial_fails $pkg"; \
    done; \
    test "${partial_fails}" != "" && echo "opam-repo-ci detected dependencies failing: ${partial_fails}"; \
    exit 1
RUN opam reinstall owl-opt.0.0.1; \
    res=$?; \
    test "$res" != 31 && exit "$res"; \
    export OPAMCLI=2.0; \
    build_dir=$(opam var prefix)/.opam-switch/build; \
    failed=$(ls "$build_dir"); \
    partial_fails=""; \
    for pkg in $failed; do \
    if opam show -f x-ci-accept-failures: "$pkg" | grep -qF "\"debian-12\""; then \
    echo "A package failed and has been disabled for CI using the 'x-ci-accept-failures' field."; \
    fi; \
    test "$pkg" != 'owl-opt.0.0.1' && partial_fails="$partial_fails $pkg"; \
    done; \
    test "${partial_fails}" != "" && echo "opam-repo-ci detected dependencies failing: ${partial_fails}"; \
    exit 1
RUN (opam reinstall --with-test owl-opt.0.0.1) || true
RUN opam reinstall --with-test --verbose owl-opt.0.0.1; \
    res=$?; \
    test "$res" != 31 && exit "$res"; \
    export OPAMCLI=2.0; \
    build_dir=$(opam var prefix)/.opam-switch/build; \
    failed=$(ls "$build_dir"); \
    partial_fails=""; \
    for pkg in $failed; do \
    if opam show -f x-ci-accept-failures: "$pkg" | grep -qF "\"debian-12\""; then \
    echo "A package failed and has been disabled for CI using the 'x-ci-accept-failures' field."; \
    fi; \
    test "$pkg" != 'owl-opt.0.0.1' && partial_fails="$partial_fails $pkg"; \
    done; \
    test "${partial_fails}" != "" && echo "opam-repo-ci detected dependencies failing: ${partial_fails}"; \
    exit 1

END-OF-DOCKERFILE
docker build -f ../Dockerfile .

2025-02-24 08:32.09: Using cache hint "ocaml/opam:debian-12-ocaml-4.14@sha256:74114e6518f67eaaca9dfbd3a0a8e27123f8607d1ac62b00e945d9c187c96098-ocamlmod.0.1.0-owl-opt.0.0.1-0def47e7b511023db693d6098b7284568d1f56f0"
2025-02-24 08:32.09: Using OBuilder spec:
((from ocaml/opam:debian-12-ocaml-4.14@sha256:74114e6518f67eaaca9dfbd3a0a8e27123f8607d1ac62b00e945d9c187c96098)
 (user (uid 1000) (gid 1000))
 (workdir /home/opam)
 (run (shell "sudo ln -f /usr/bin/opam-dev /usr/bin/opam"))
 (run (network host)
      (shell "opam init --reinit --config .opamrc-sandbox -ni"))
 (run (shell "opam option solver=builtin-0install && opam config report"))
 (env OPAMDOWNLOADJOBS 1)
 (env OPAMERRLOGLEN 0)
 (env OPAMPRECISETRACKING 1)
 (env CI true)
 (env OPAM_REPO_CI true)
 (run (shell "rm -rf opam-repository/"))
 (copy (src .) (dst opam-repository/))
 (run (shell "opam repository set-url --strict default opam-repository/"))
 (run (network host)
      (shell "opam update --depexts || true"))
 (run (shell "opam pin add -k version -yn ocamlmod.0.1.0 0.1.0"))
 (run (cache (opam-archives (target /home/opam/.opam/download-cache)))
      (network host)
      (shell  "opam reinstall ocamlmod.0.1.0;\
             \n        res=$?;\
             \n        test \"$res\" != 31 && exit \"$res\";\
             \n        export OPAMCLI=2.0;\
             \n        build_dir=$(opam var prefix)/.opam-switch/build;\
             \n        failed=$(ls \"$build_dir\");\
             \n        partial_fails=\"\";\
             \n        for pkg in $failed; do\
             \n          if opam show -f x-ci-accept-failures: \"$pkg\" | grep -qF \"\\\"debian-12\\\"\"; then\
             \n            echo \"A package failed and has been disabled for CI using the 'x-ci-accept-failures' field.\";\
             \n          fi;\
             \n          test \"$pkg\" != 'ocamlmod.0.1.0' && partial_fails=\"$partial_fails $pkg\";\
             \n        done;\
             \n        test \"${partial_fails}\" != \"\" && echo \"opam-repo-ci detected dependencies failing: ${partial_fails}\";\
             \n        exit 1"))
 (run (cache (opam-archives (target /home/opam/.opam/download-cache)))
      (network host)
      (shell  "opam reinstall owl-opt.0.0.1;\
             \n        res=$?;\
             \n        test \"$res\" != 31 && exit \"$res\";\
             \n        export OPAMCLI=2.0;\
             \n        build_dir=$(opam var prefix)/.opam-switch/build;\
             \n        failed=$(ls \"$build_dir\");\
             \n        partial_fails=\"\";\
             \n        for pkg in $failed; do\
             \n          if opam show -f x-ci-accept-failures: \"$pkg\" | grep -qF \"\\\"debian-12\\\"\"; then\
             \n            echo \"A package failed and has been disabled for CI using the 'x-ci-accept-failures' field.\";\
             \n          fi;\
             \n          test \"$pkg\" != 'owl-opt.0.0.1' && partial_fails=\"$partial_fails $pkg\";\
             \n        done;\
             \n        test \"${partial_fails}\" != \"\" && echo \"opam-repo-ci detected dependencies failing: ${partial_fails}\";\
             \n        exit 1"))
 (run (network host)
      (shell "(opam reinstall --with-test owl-opt.0.0.1) || true"))
 (run (shell  "opam reinstall --with-test --verbose owl-opt.0.0.1;\
             \n        res=$?;\
             \n        test \"$res\" != 31 && exit \"$res\";\
             \n        export OPAMCLI=2.0;\
             \n        build_dir=$(opam var prefix)/.opam-switch/build;\
             \n        failed=$(ls \"$build_dir\");\
             \n        partial_fails=\"\";\
             \n        for pkg in $failed; do\
             \n          if opam show -f x-ci-accept-failures: \"$pkg\" | grep -qF \"\\\"debian-12\\\"\"; then\
             \n            echo \"A package failed and has been disabled for CI using the 'x-ci-accept-failures' field.\";\
             \n          fi;\
             \n          test \"$pkg\" != 'owl-opt.0.0.1' && partial_fails=\"$partial_fails $pkg\";\
             \n        done;\
             \n        test \"${partial_fails}\" != \"\" && echo \"opam-repo-ci detected dependencies failing: ${partial_fails}\";\
             \n        exit 1"))
)

2025-02-24 08:32.09: Waiting for resource in pool OCluster
2025-02-24 09:11.16: Waiting for worker…
2025-02-24 09:14.01: Got resource from pool OCluster
Building on doris.caelum.ci.dev
All commits already cached
Updating files:  88% (19804/22467)
Updating files:  89% (19996/22467)
Updating files:  90% (20221/22467)
Updating files:  91% (20445/22467)
Updating files:  92% (20670/22467)
Updating files:  93% (20895/22467)
Updating files:  94% (21119/22467)
Updating files:  95% (21344/22467)
Updating files:  96% (21569/22467)
Updating files:  97% (21793/22467)
Updating files:  98% (22018/22467)
Updating files:  99% (22243/22467)
Updating files: 100% (22467/22467)
Updating files: 100% (22467/22467), done.
HEAD is now at 4022a684b6 Merge pull request #27464 from hannesm/release-crunch-v4.0.0
Updating 4022a684b6..0def47e7b5
Fast-forward
 packages/ocamlmod/ocamlmod.0.1.0/opam | 37 +++++++++++++++++++++++++++++++++++
 1 file changed, 37 insertions(+)
 create mode 100644 packages/ocamlmod/ocamlmod.0.1.0/opam

(from ocaml/opam:debian-12-ocaml-4.14@sha256:74114e6518f67eaaca9dfbd3a0a8e27123f8607d1ac62b00e945d9c187c96098)
2025-02-24 09:15.50 ---> using "fd8c1dcac8c3a6cd3ee8edd679de5f3384de62d6f587d449e00238111470ab75" from cache

/: (user (uid 1000) (gid 1000))

/: (workdir /home/opam)

/home/opam: (run (shell "sudo ln -f /usr/bin/opam-dev /usr/bin/opam"))
2025-02-24 09:15.50 ---> using "63348f49024352af4df51181a4d2b78015b336e78bdb909884d7d69472d901a3" from cache

/home/opam: (run (network host)
                 (shell "opam init --reinit --config .opamrc-sandbox -ni"))
Configuring from /home/opam/.opamrc-sandbox, then /home/opam/.opamrc, and finally from built-in defaults.
Checking for available remotes: rsync and local, git.
  - you won't be able to use mercurial repositories unless you install the hg command on your system.
  - you won't be able to use darcs repositories unless you install the darcs command on your system.

This development version of opam requires an update to the layout of /home/opam/.opam from version 2.0 to version 2.2, which can't be reverted.
You may want to back it up before going further.

Continue? [Y/n] y
[NOTE] The 'jobs' option was reset, its value was 39 and its new value will vary according to the current number of cores on your machine. You can restore the fixed value using:
           opam option jobs=39 --global
Format upgrade done.

<><> Updating repositories ><><><><><><><><><><><><><><><><><><><><><><><><><><>
[opam-repository-archive] synchronised from git+https://github.com/ocaml/opam-repository-archive
[default] synchronised from file:///home/opam/opam-repository
2025-02-24 09:15.50 ---> using "43a9673a4da24840797129b74017b6eb598863ba09d5d1a9bc3d3bd190bc8651" from cache

/home/opam: (run (shell "opam option solver=builtin-0install && opam config report"))
Set to 'builtin-0install' the field solver in global configuration
# opam config report
# opam-version         2.4.0~alpha1~dev (34b7b4ec4af0ebd3c8fc4aee8088471be2ad48c7)
# self-upgrade         no
# system               arch=x86_64 os=linux os-distribution=debian os-version=12
# solver               builtin-0install
# install-criteria     -changed,-count[avoid-version,solution]
# upgrade-criteria     -count[avoid-version,solution]
# jobs                 255
# repositories         1 (local), 1 (version-controlled)
# pinned               1 (version)
# current-switch       4.14
# invariant            ["ocaml-base-compiler" {= "4.14.2"}]
# compiler-packages    ocaml-base-compiler.4.14.2, ocaml-options-vanilla.1
# ocaml:native         true
# ocaml:native-tools   true
# ocaml:native-dynlink true
# ocaml:stubsdir       /home/opam/.opam/4.14/lib/ocaml/stublibs:/home/opam/.opam/4.14/lib/ocaml
# ocaml:preinstalled   false
# ocaml:compiler       4.14.2
2025-02-24 09:15.50 ---> using "5b9fc6f723d0065251ab5d52aa7740a229f8f438bf79f559d9f8db36ee599317" from cache

/home/opam: (env OPAMDOWNLOADJOBS 1)

/home/opam: (env OPAMERRLOGLEN 0)

/home/opam: (env OPAMPRECISETRACKING 1)

/home/opam: (env CI true)

/home/opam: (env OPAM_REPO_CI true)

/home/opam: (run (shell "rm -rf opam-repository/"))
2025-02-24 09:15.50 ---> using "a874c49896169ec02e95177c8b5fb923a0e02dbc7bef07316a52b7ca53832295" from cache

/home/opam: (copy (src .) (dst opam-repository/))
2025-02-24 09:15.52 ---> using "4253df3ceb367f320e2e59481694f41945d0aa5a3aff8e84d62ec30597769699" from cache

/home/opam: (run (shell "opam repository set-url --strict default opam-repository/"))
[default] Initialised
2025-02-24 09:15.52 ---> using "b0d31e1d3e54c8f2cf9229a7a258f86593277d01a3029f618e9e06729f50143c" from cache

/home/opam: (run (network host)
                 (shell "opam update --depexts || true"))
+ /usr/bin/sudo "apt-get" "update"
- Hit:1 http://deb.debian.org/debian bookworm InRelease
- Get:2 http://deb.debian.org/debian bookworm-updates InRelease [55.4 kB]
- Get:3 http://deb.debian.org/debian-security bookworm-security InRelease [48.0 kB]
- Get:4 http://deb.debian.org/debian-security bookworm-security/main amd64 Packages [246 kB]
- Fetched 349 kB in 0s (766 kB/s)
- Reading package lists...
2025-02-24 09:15.52 ---> using "3190819e9a9b503daf97a971adb376054d5dae792297b7f693d4b54899654a95" from cache

/home/opam: (run (shell "opam pin add -k version -yn ocamlmod.0.1.0 0.1.0"))
ocamlmod is now pinned to version 0.1.0
2025-02-24 09:15.52 ---> using "a1c9a3b28bfa48ebb2cb16d4ad6c5c79f4f4025f4430dedc449bfd06148b496a" from cache

/home/opam: (run (cache (opam-archives (target /home/opam/.opam/download-cache)))
                 (network host)
                 (shell  "opam reinstall ocamlmod.0.1.0;\
                        \n        res=$?;\
                        \n        test \"$res\" != 31 && exit \"$res\";\
                        \n        export OPAMCLI=2.0;\
                        \n        build_dir=$(opam var prefix)/.opam-switch/build;\
                        \n        failed=$(ls \"$build_dir\");\
                        \n        partial_fails=\"\";\
                        \n        for pkg in $failed; do\
                        \n          if opam show -f x-ci-accept-failures: \"$pkg\" | grep -qF \"\\\"debian-12\\\"\"; then\
                        \n            echo \"A package failed and has been disabled for CI using the 'x-ci-accept-failures' field.\";\
                        \n          fi;\
                        \n          test \"$pkg\" != 'ocamlmod.0.1.0' && partial_fails=\"$partial_fails $pkg\";\
                        \n        done;\
                        \n        test \"${partial_fails}\" != \"\" && echo \"opam-repo-ci detected dependencies failing: ${partial_fails}\";\
                        \n        exit 1"))
ocamlmod.0.1.0 is not installed. Install it? [Y/n] y
The following actions will be performed:
=== install 2 packages
  - install dune     3.17.2         [required by ocamlmod]
  - install ocamlmod 0.1.0 (pinned)

<><> Processing actions <><><><><><><><><><><><><><><><><><><><><><><><><><><><>
-> retrieved dune.3.17.2  (cached)
-> retrieved ocamlmod.0.1.0  (cached)
-> installed dune.3.17.2
-> installed ocamlmod.0.1.0
Done.
# To update the current shell environment, run: eval $(opam env)
2025-02-24 09:15.52 ---> using "518b5c4f8da5b692ed3584669396faac7fdc0a48af64716bd9f64828cc9889f6" from cache

/home/opam: (run (cache (opam-archives (target /home/opam/.opam/download-cache)))
                 (network host)
                 (shell  "opam reinstall owl-opt.0.0.1;\
                        \n        res=$?;\
                        \n        test \"$res\" != 31 && exit \"$res\";\
                        \n        export OPAMCLI=2.0;\
                        \n        build_dir=$(opam var prefix)/.opam-switch/build;\
                        \n        failed=$(ls \"$build_dir\");\
                        \n        partial_fails=\"\";\
                        \n        for pkg in $failed; do\
                        \n          if opam show -f x-ci-accept-failures: \"$pkg\" | grep -qF \"\\\"debian-12\\\"\"; then\
                        \n            echo \"A package failed and has been disabled for CI using the 'x-ci-accept-failures' field.\";\
                        \n          fi;\
                        \n          test \"$pkg\" != 'owl-opt.0.0.1' && partial_fails=\"$partial_fails $pkg\";\
                        \n        done;\
                        \n        test \"${partial_fails}\" != \"\" && echo \"opam-repo-ci detected dependencies failing: ${partial_fails}\";\
                        \n        exit 1"))
owl-opt.0.0.1 is not installed. Install it? [Y/n] y
The following actions will be performed:
=== install 22 packages
  - install base                v0.16.3 [required by owl, ppx-owl-opt]
  - install bigarray-compat     1.1.0   [required by ctypes]
  - install camlzip             1.13    [required by npy]
  - install conf-bash           1       [required by base]
  - install conf-openblas       0.2.2   [required by owl]
  - install conf-pkg-config     4       [required by conf-zlib]
  - install conf-zlib           1       [required by camlzip]
  - install csexp               1.5.2   [required by dune-configurator]
  - install ctypes              0.23.0  [required by owl]
  - install dune-configurator   3.17.2  [required by owl]
  - install integers            0.7.0   [required by ctypes]
  - install npy                 0.0.9   [required by owl]
  - install ocaml-compiler-libs v0.12.4 [required by ppxlib]
  - install ocamlfind           1.9.8   [required by camlzip]
  - install owl                 1.2     [required by owl-opt]
  - install owl-base            1.2     [required by owl]
  - install owl-opt             0.0.1
  - install ppx-owl-opt         0.0.1   [required by owl-opt]
  - install ppx_derivers        1.2.1   [required by ppxlib]
  - install ppxlib              0.35.0  [required by ppx-owl-opt]
  - install sexplib0            v0.16.0 [required by base, ppxlib]
  - install stdlib-shims        0.3.0   [required by ppxlib]

The following system packages will first need to be installed:
    liblapacke-dev libopenblas-dev pkg-config zlib1g-dev

<><> Handling external dependencies <><><><><><><><><><><><><><><><><><><><><><>

opam believes some required external dependencies are missing. opam can:
> 1. Run apt-get to install them (may need root/sudo access)
  2. Display the recommended apt-get command and wait while you run it manually (e.g. in another terminal)
  3. Continue anyway, and, upon success, permanently register that this external dependency is present, but not detectable
  4. Abort the installation

[1/2/3/4] 1

+ /usr/bin/sudo "apt-get" "install" "-qq" "-yy" "liblapacke-dev" "libopenblas-dev" "pkg-config" "zlib1g-dev"
- debconf: delaying package configuration, since apt-utils is not installed
- Selecting previously unselected package libblas3:amd64.
- (Reading database ... 
(Reading database ... 5%
(Reading database ... 10%
(Reading database ... 15%
(Reading database ... 20%
(Reading database ... 25%
(Reading database ... 30%
(Reading database ... 35%
(Reading database ... 40%
(Reading database ... 45%
(Reading database ... 50%
(Reading database ... 55%
(Reading database ... 60%
(Reading database ... 65%
(Reading database ... 70%
(Reading database ... 75%
(Reading database ... 80%
(Reading database ... 85%
(Reading database ... 90%
(Reading database ... 95%
(Reading database ... 100%
(Reading database ... 18745 files and directories currently installed.)
- Preparing to unpack .../00-libblas3_3.11.0-2_amd64.deb ...
- Unpacking libblas3:amd64 (3.11.0-2) ...
- Selecting previously unselected package libblas-dev:amd64.
- Preparing to unpack .../01-libblas-dev_3.11.0-2_amd64.deb ...
- Unpacking libblas-dev:amd64 (3.11.0-2) ...
- Selecting previously unselected package libgfortran5:amd64.
- Preparing to unpack .../02-libgfortran5_12.2.0-14_amd64.deb ...
- Unpacking libgfortran5:amd64 (12.2.0-14) ...
- Selecting previously unselected package libopenblas0-pthread:amd64.
- Preparing to unpack .../03-libopenblas0-pthread_0.3.21+ds-4_amd64.deb ...
- Unpacking libopenblas0-pthread:amd64 (0.3.21+ds-4) ...
- Selecting previously unselected package liblapack3:amd64.
- Preparing to unpack .../04-liblapack3_3.11.0-2_amd64.deb ...
- Unpacking liblapack3:amd64 (3.11.0-2) ...
- Selecting previously unselected package libopenblas-pthread-dev:amd64.
- Preparing to unpack .../05-libopenblas-pthread-dev_0.3.21+ds-4_amd64.deb ...
- Unpacking libopenblas-pthread-dev:amd64 (0.3.21+ds-4) ...
- Selecting previously unselected package liblapack-dev:amd64.
- Preparing to unpack .../06-liblapack-dev_3.11.0-2_amd64.deb ...
- Unpacking liblapack-dev:amd64 (3.11.0-2) ...
- Selecting previously unselected package libtmglib3:amd64.
- Preparing to unpack .../07-libtmglib3_3.11.0-2_amd64.deb ...
- Unpacking libtmglib3:amd64 (3.11.0-2) ...
- Selecting previously unselected package liblapacke:amd64.
- Preparing to unpack .../08-liblapacke_3.11.0-2_amd64.deb ...
- Unpacking liblapacke:amd64 (3.11.0-2) ...
- Selecting previously unselected package libtmglib-dev:amd64.
- Preparing to unpack .../09-libtmglib-dev_3.11.0-2_amd64.deb ...
- Unpacking libtmglib-dev:amd64 (3.11.0-2) ...
- Selecting previously unselected package liblapacke-dev:amd64.
- Preparing to unpack .../10-liblapacke-dev_3.11.0-2_amd64.deb ...
- Unpacking liblapacke-dev:amd64 (3.11.0-2) ...
- Selecting previously unselected package libopenblas0:amd64.
- Preparing to unpack .../11-libopenblas0_0.3.21+ds-4_amd64.deb ...
- Unpacking libopenblas0:amd64 (0.3.21+ds-4) ...
- Selecting previously unselected package libopenblas-dev:amd64.
- Preparing to unpack .../12-libopenblas-dev_0.3.21+ds-4_amd64.deb ...
- Unpacking libopenblas-dev:amd64 (0.3.21+ds-4) ...
- Selecting previously unselected package libpkgconf3:amd64.
- Preparing to unpack .../13-libpkgconf3_1.8.1-1_amd64.deb ...
- Unpacking libpkgconf3:amd64 (1.8.1-1) ...
- Selecting previously unselected package pkgconf-bin.
- Preparing to unpack .../14-pkgconf-bin_1.8.1-1_amd64.deb ...
- Unpacking pkgconf-bin (1.8.1-1) ...
- Selecting previously unselected package pkgconf:amd64.
- Preparing to unpack .../15-pkgconf_1.8.1-1_amd64.deb ...
- Unpacking pkgconf:amd64 (1.8.1-1) ...
- Selecting previously unselected package pkg-config:amd64.
- Preparing to unpack .../16-pkg-config_1.8.1-1_amd64.deb ...
- Unpacking pkg-config:amd64 (1.8.1-1) ...
- Selecting previously unselected package zlib1g-dev:amd64.
- Preparing to unpack .../17-zlib1g-dev_1%3a1.2.13.dfsg-1_amd64.deb ...
- Unpacking zlib1g-dev:amd64 (1:1.2.13.dfsg-1) ...
- Setting up libblas3:amd64 (3.11.0-2) ...
- update-alternatives: using /usr/lib/x86_64-linux-gnu/blas/libblas.so.3 to provide /usr/lib/x86_64-linux-gnu/libblas.so.3 (libblas.so.3-x86_64-linux-gnu) in auto mode
- Setting up libpkgconf3:amd64 (1.8.1-1) ...
- Setting up pkgconf-bin (1.8.1-1) ...
- Setting up libgfortran5:amd64 (12.2.0-14) ...
- Setting up zlib1g-dev:amd64 (1:1.2.13.dfsg-1) ...
- Setting up libblas-dev:amd64 (3.11.0-2) ...
- update-alternatives: using /usr/lib/x86_64-linux-gnu/blas/libblas.so to provide /usr/lib/x86_64-linux-gnu/libblas.so (libblas.so-x86_64-linux-gnu) in auto mode
- Setting up liblapack3:amd64 (3.11.0-2) ...
- update-alternatives: using /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3 to provide /usr/lib/x86_64-linux-gnu/liblapack.so.3 (liblapack.so.3-x86_64-linux-gnu) in auto mode
- Setting up libopenblas0-pthread:amd64 (0.3.21+ds-4) ...
- update-alternatives: using /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 to provide /usr/lib/x86_64-linux-gnu/libblas.so.3 (libblas.so.3-x86_64-linux-gnu) in auto mode
- update-alternatives: using /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3 to provide /usr/lib/x86_64-linux-gnu/liblapack.so.3 (liblapack.so.3-x86_64-linux-gnu) in auto mode
- update-alternatives: using /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblas.so.0 to provide /usr/lib/x86_64-linux-gnu/libopenblas.so.0 (libopenblas.so.0-x86_64-linux-gnu) in auto mode
- Setting up pkgconf:amd64 (1.8.1-1) ...
- Setting up libtmglib3:amd64 (3.11.0-2) ...
- Setting up liblapack-dev:amd64 (3.11.0-2) ...
- update-alternatives: using /usr/lib/x86_64-linux-gnu/lapack/liblapack.so to provide /usr/lib/x86_64-linux-gnu/liblapack.so (liblapack.so-x86_64-linux-gnu) in auto mode
- Setting up pkg-config:amd64 (1.8.1-1) ...
- Setting up libopenblas0:amd64 (0.3.21+ds-4) ...
- Setting up liblapacke:amd64 (3.11.0-2) ...
- Setting up libtmglib-dev:amd64 (3.11.0-2) ...
- Setting up libopenblas-pthread-dev:amd64 (0.3.21+ds-4) ...
- update-alternatives: using /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so to provide /usr/lib/x86_64-linux-gnu/libblas.so (libblas.so-x86_64-linux-gnu) in auto mode
- update-alternatives: using /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so to provide /usr/lib/x86_64-linux-gnu/liblapack.so (liblapack.so-x86_64-linux-gnu) in auto mode
- update-alternatives: using /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblas.so to provide /usr/lib/x86_64-linux-gnu/libopenblas.so (libopenblas.so-x86_64-linux-gnu) in auto mode
- Setting up liblapacke-dev:amd64 (3.11.0-2) ...
- Setting up libopenblas-dev:amd64 (0.3.21+ds-4) ...
- Processing triggers for libc-bin (2.36-9+deb12u9) ...

<><> Processing actions <><><><><><><><><><><><><><><><><><><><><><><><><><><><>
-> retrieved base.v0.16.3  (cached)
-> retrieved bigarray-compat.1.1.0  (cached)
-> retrieved camlzip.1.13  (cached)
-> retrieved conf-openblas.0.2.2  (cached)
-> retrieved csexp.1.5.2  (cached)
-> retrieved ctypes.0.23.0  (cached)
-> installed conf-bash.1
-> installed conf-pkg-config.4
-> installed conf-zlib.1
-> installed conf-openblas.0.2.2
-> installed bigarray-compat.1.1.0
-> installed csexp.1.5.2
-> retrieved dune-configurator.3.17.2  (cached)
-> retrieved integers.0.7.0  (cached)
-> retrieved npy.0.0.9  (cached)
-> retrieved ocaml-compiler-libs.v0.12.4  (cached)
-> retrieved ocamlfind.1.9.8  (cached)
-> installed ocaml-compiler-libs.v0.12.4
-> retrieved owl.1.2, owl-base.1.2  (cached)
-> installed dune-configurator.3.17.2
-> retrieved owl-opt.0.0.1, ppx-owl-opt.0.0.1  (cached)
-> retrieved ppx_derivers.1.2.1  (cached)
-> retrieved ppxlib.0.35.0  (cached)
-> retrieved sexplib0.v0.16.0  (cached)
-> retrieved stdlib-shims.0.3.0  (cached)
-> installed ppx_derivers.1.2.1
-> installed stdlib-shims.0.3.0
-> installed sexplib0.v0.16.0
-> installed integers.0.7.0
-> installed ocamlfind.1.9.8
-> installed camlzip.1.13
-> installed owl-base.1.2
-> installed npy.0.0.9
-> installed base.v0.16.3
-> installed ctypes.0.23.0
-> installed ppxlib.0.35.0
-> installed ppx-owl-opt.0.0.1
-> installed owl.1.2
-> installed owl-opt.0.0.1
Done.
# To update the current shell environment, run: eval $(opam env)
2025-02-24 09:17.50 ---> saved as "5ac671c42a2a856db40959c53eb131d24d84b9b1f8f7bcc55f15bdb11f21a226"

/home/opam: (run (network host)
                 (shell "(opam reinstall --with-test owl-opt.0.0.1) || true"))
The following actions will be performed:
=== recompile 1 package
  - recompile owl-opt 0.0.1

<><> Processing actions <><><><><><><><><><><><><><><><><><><><><><><><><><><><>
-> retrieved owl-opt.0.0.1  (https://github.com/owlbarn/owl_opt/archive/v0.0.1.tar.gz)
-> removed   owl-opt.0.0.1
-> installed owl-opt.0.0.1
Done.
# To update the current shell environment, run: eval $(opam env)
2025-02-24 09:18.02 ---> saved as "44ff36ea687953f6ed8dfeb7a58555c8e18eb5cd8cd357dc693475559cb37273"

/home/opam: (run (shell  "opam reinstall --with-test --verbose owl-opt.0.0.1;\
                        \n        res=$?;\
                        \n        test \"$res\" != 31 && exit \"$res\";\
                        \n        export OPAMCLI=2.0;\
                        \n        build_dir=$(opam var prefix)/.opam-switch/build;\
                        \n        failed=$(ls \"$build_dir\");\
                        \n        partial_fails=\"\";\
                        \n        for pkg in $failed; do\
                        \n          if opam show -f x-ci-accept-failures: \"$pkg\" | grep -qF \"\\\"debian-12\\\"\"; then\
                        \n            echo \"A package failed and has been disabled for CI using the 'x-ci-accept-failures' field.\";\
                        \n          fi;\
                        \n          test \"$pkg\" != 'owl-opt.0.0.1' && partial_fails=\"$partial_fails $pkg\";\
                        \n        done;\
                        \n        test \"${partial_fails}\" != \"\" && echo \"opam-repo-ci detected dependencies failing: ${partial_fails}\";\
                        \n        exit 1"))
The following actions will be performed:
=== recompile 1 package
  - recompile owl-opt 0.0.1

<><> Processing actions <><><><><><><><><><><><><><><><><><><><><><><><><><><><>
Processing  1/4: [owl-opt.0.0.1: extract]
-> retrieved owl-opt.0.0.1  (cached)
Processing  2/4: [owl-opt: dune build]
+ /home/opam/.opam/opam-init/hooks/sandbox.sh "build" "dune" "build" "-p" "owl-opt" "-j" "255" (CWD=/home/opam/.opam/4.14/.opam-switch/build/owl-opt.0.0.1)
- File "dune-project", line 2, characters 11-14:
- 2 | (using fmt 1.1)
-                ^^^
- Warning: Version 1.1 of integration with automatic formatters is not
- supported until version 1.7 of the dune language.
- Supported versions of this extension in version 1.5 of the dune language:
- - 1.0
Processing  2/4: [owl-opt: dune runtest]
+ /home/opam/.opam/opam-init/hooks/sandbox.sh "build" "dune" "runtest" "examples/opt" "-p" "owl-opt" "-j" "255" (CWD=/home/opam/.opam/4.14/.opam-switch/build/owl-opt.0.0.1)
- File "dune-project", line 2, characters 11-14:
- 2 | (using fmt 1.1)
-                ^^^
- Warning: Version 1.1 of integration with automatic formatters is not
- supported until version 1.7 of the dune language.
- Supported versions of this extension in version 1.5 of the dune language:
- - 1.0
- (cd _build/default/examples/opt && ./gd.exe)
- 
iter: 0 | loss: 4.456602
iter: 1 | loss: 4.456602
iter: 2 | loss: 4.456300
iter: 3 | loss: 4.455999
iter: 4 | loss: 4.455697
iter: 5 | loss: 4.455396
iter: 6 | loss: 4.455094
iter: 7 | loss: 4.454793
iter: 8 | loss: 4.454491
iter: 9 | loss: 4.454190
iter: 10 | loss: 4.453888
iter: 11 | loss: 4.453587
iter: 12 | loss: 4.453285
iter: 13 | loss: 4.452984
iter: 14 | loss: 4.452682
iter: 15 | loss: 4.452381
iter: 16 | loss: 4.452079
iter: 17 | loss: 4.451778
iter: 18 | loss: 4.451476
iter: 19 | loss: 4.451175
iter: 20 | loss: 4.450873
iter: 21 | loss: 4.450572
iter: 22 | loss: 4.450270
iter: 23 | loss: 4.449969
iter: 24 | loss: 4.449667
iter: 25 | loss: 4.449366
iter: 26 | loss: 4.449064
iter: 27 | loss: 4.448763
iter: 28 | loss: 4.448461
iter: 29 | loss: 4.448160
iter: 30 | loss: 4.447858
iter: 31 | loss: 4.447557
iter: 32 | loss: 4.447255
iter: 33 | loss: 4.446954
iter: 34 | loss: 4.446652
iter: 35 | loss: 4.446351
iter: 36 | loss: 4.446049
iter: 37 | loss: 4.445748
iter: 38 | loss: 4.445446
iter: 39 | loss: 4.445144
iter: 40 | loss: 4.444843
iter: 41 | loss: 4.444541
iter: 42 | loss: 4.444240
iter: 43 | loss: 4.443938
iter: 44 | loss: 4.443637
iter: 45 | loss: 4.443335
iter: 46 | loss: 4.443034
iter: 47 | loss: 4.442732
iter: 48 | loss: 4.442431
iter: 49 | loss: 4.442129
iter: 50 | loss: 4.441828
iter: 51 | loss: 4.441526
iter: 52 | loss: 4.441225
iter: 53 | loss: 4.440923
iter: 54 | loss: 4.440622
iter: 55 | loss: 4.440320
iter: 56 | loss: 4.440019
iter: 57 | loss: 4.439717
iter: 58 | loss: 4.439416
iter: 59 | loss: 4.439114
iter: 60 | loss: 4.438813
iter: 61 | loss: 4.438511
iter: 62 | loss: 4.438210
iter: 63 | loss: 4.437908
iter: 64 | loss: 4.437607
iter: 65 | loss: 4.437305
iter: 66 | loss: 4.437004
iter: 67 | loss: 4.436702
iter: 68 | loss: 4.436401
iter: 69 | loss: 4.436099
iter: 70 | loss: 4.435798
iter: 71 | loss: 4.435496
iter: 72 | loss: 4.435195
iter: 73 | loss: 4.434893
iter: 74 | loss: 4.434592
iter: 75 | loss: 4.434290
iter: 76 | loss: 4.433989
iter: 77 | loss: 4.433687
iter: 78 | loss: 4.433386
iter: 79 | loss: 4.433084
iter: 80 | loss: 4.432783
iter: 81 | loss: 4.432481
iter: 82 | loss: 4.432180
iter: 83 | loss: 4.431878
iter: 84 | loss: 4.431577
iter: 85 | loss: 4.431275
iter: 86 | loss: 4.430974
iter: 87 | loss: 4.430672
iter: 88 | loss: 4.430371
iter: 89 | loss: 4.430069
iter: 90 | loss: 4.429767
iter: 91 | loss: 4.429466
iter: 92 | loss: 4.429164
iter: 93 | loss: 4.428863
iter: 94 | loss: 4.428561
iter: 95 | loss: 4.428260
iter: 96 | loss: 4.427958
iter: 97 | loss: 4.427657
iter: 98 | loss: 4.427355
iter: 99 | loss: 4.427054
iter: 100 | loss: 4.426752
iter: 101 | loss: 4.426451
iter: 102 | loss: 4.426149
iter: 103 | loss: 4.425848
iter: 104 | loss: 4.425546
iter: 105 | loss: 4.425245
iter: 106 | loss: 4.424943
iter: 107 | loss: 4.424642
iter: 108 | loss: 4.424340
iter: 109 | loss: 4.424039
iter: 110 | loss: 4.423737
iter: 111 | loss: 4.423436
iter: 112 | loss: 4.423134
iter: 113 | loss: 4.422833
iter: 114 | loss: 4.422531
iter: 115 | loss: 4.422230
iter: 116 | loss: 4.421928
iter: 117 | loss: 4.421627
iter: 118 | loss: 4.421325
iter: 119 | loss: 4.421024
iter: 120 | loss: 4.420722
iter: 121 | loss: 4.420421
iter: 122 | loss: 4.420119
iter: 123 | loss: 4.419818
iter: 124 | loss: 4.419516
iter: 125 | loss: 4.419215
iter: 126 | loss: 4.418913
iter: 127 | loss: 4.418612
iter: 128 | loss: 4.418310
iter: 129 | loss: 4.418009
iter: 130 | loss: 4.417707
iter: 131 | loss: 4.417406
iter: 132 | loss: 4.417104
iter: 133 | loss: 4.416803
iter: 134 | loss: 4.416501
iter: 135 | loss: 4.416200
iter: 136 | loss: 4.415898
iter: 137 | loss: 4.415597
iter: 138 | loss: 4.415295
iter: 139 | loss: 4.414994
iter: 140 | loss: 4.414692
iter: 141 | loss: 4.414391
iter: 142 | loss: 4.414089
iter: 143 | loss: 4.413787
iter: 144 | loss: 4.413486
iter: 145 | loss: 4.413184
iter: 146 | loss: 4.412883
iter: 147 | loss: 4.412581
iter: 148 | loss: 4.412280
iter: 149 | loss: 4.411978
iter: 150 | loss: 4.411677
iter: 151 | loss: 4.411375
iter: 152 | loss: 4.411074
iter: 153 | loss: 4.410772
iter: 154 | loss: 4.410471
iter: 155 | loss: 4.410169
iter: 156 | loss: 4.409868
iter: 157 | loss: 4.409566
iter: 158 | loss: 4.409265
iter: 159 | loss: 4.408963
iter: 160 | loss: 4.408662
iter: 161 | loss: 4.408360
iter: 162 | loss: 4.408059
iter: 163 | loss: 4.407757
iter: 164 | loss: 4.407456
iter: 165 | loss: 4.407154
iter: 166 | loss: 4.406853
iter: 167 | loss: 4.406551
iter: 168 | loss: 4.406250
iter: 169 | loss: 4.405948
iter: 170 | loss: 4.405647
iter: 171 | loss: 4.405345
iter: 172 | loss: 4.405044
iter: 173 | loss: 4.404742
iter: 174 | loss: 4.404441
iter: 175 | loss: 4.404139
iter: 176 | loss: 4.403838
iter: 177 | loss: 4.403536
iter: 178 | loss: 4.403235
iter: 179 | loss: 4.402933
iter: 180 | loss: 4.402632
iter: 181 | loss: 4.402330
iter: 182 | loss: 4.402029
iter: 183 | loss: 4.401727
iter: 184 | loss: 4.401426
iter: 185 | loss: 4.401124
iter: 186 | loss: 4.400823
iter: 187 | loss: 4.400521
iter: 188 | loss: 4.400220
iter: 189 | loss: 4.399918
iter: 190 | loss: 4.399617
iter: 191 | loss: 4.399315
iter: 192 | loss: 4.399014
iter: 193 | loss: 4.398712
iter: 194 | loss: 4.398410
iter: 195 | loss: 4.398109
iter: 196 | loss: 4.397807
iter: 197 | loss: 4.397506
iter: 198 | loss: 4.397204
iter: 199 | loss: 4.396903
iter: 200 | loss: 4.396601
iter: 201 | loss: 4.396300
iter: 202 | loss: 4.395998
iter: 203 | loss: 4.395697
iter: 204 | loss: 4.395395
iter: 205 | loss: 4.395094
iter: 206 | loss: 4.394792
iter: 207 | loss: 4.394491
iter: 208 | loss: 4.394189
iter: 209 | loss: 4.393888
iter: 210 | loss: 4.393586
iter: 211 | loss: 4.393285
iter: 212 | loss: 4.392983
iter: 213 | loss: 4.392682
iter: 214 | loss: 4.392380
iter: 215 | loss: 4.392079
iter: 216 | loss: 4.391777
iter: 217 | loss: 4.391476
iter: 218 | loss: 4.391174
iter: 219 | loss: 4.390873
iter: 220 | loss: 4.390571
iter: 221 | loss: 4.390270
iter: 222 | loss: 4.389968
iter: 223 | loss: 4.389667
iter: 224 | loss: 4.389365
iter: 225 | loss: 4.389064
iter: 226 | loss: 4.388762
iter: 227 | loss: 4.388461
iter: 228 | loss: 4.388159
iter: 229 | loss: 4.387858
iter: 230 | loss: 4.387556
iter: 231 | loss: 4.387255
iter: 232 | loss: 4.386953
iter: 233 | loss: 4.386652
iter: 234 | loss: 4.386350
iter: 235 | loss: 4.386049
iter: 236 | loss: 4.385747
iter: 237 | loss: 4.385446
iter: 238 | loss: 4.385144
iter: 239 | loss: 4.384843
iter: 240 | loss: 4.384541
iter: 241 | loss: 4.384240
iter: 242 | loss: 4.383938
iter: 243 | loss: 4.383637
iter: 244 | loss: 4.383335
iter: 245 | loss: 4.383034
iter: 246 | loss: 4.382732
iter: 247 | loss: 4.382430
iter: 248 | loss: 4.382129
iter: 249 | loss: 4.381827
iter: 250 | loss: 4.381526
iter: 251 | loss: 4.381224
iter: 252 | loss: 4.380923
iter: 253 | loss: 4.380621
iter: 254 | loss: 4.380320
iter: 255 | loss: 4.380018
iter: 256 | loss: 4.379717
iter: 257 | loss: 4.379415
iter: 258 | loss: 4.379114
iter: 259 | loss: 4.378812
iter: 260 | loss: 4.378511
iter: 261 | loss: 4.378209
iter: 262 | loss: 4.377908
iter: 263 | loss: 4.377606
iter: 264 | loss: 4.377305
iter: 265 | loss: 4.377003
iter: 266 | loss: 4.376702
iter: 267 | loss: 4.376400
iter: 268 | loss: 4.376099
iter: 269 | loss: 4.375797
iter: 270 | loss: 4.375496
iter: 271 | loss: 4.375194
iter: 272 | loss: 4.374893
iter: 273 | loss: 4.374591
iter: 274 | loss: 4.374290
iter: 275 | loss: 4.373988
iter: 276 | loss: 4.373687
iter: 277 | loss: 4.373385
iter: 278 | loss: 4.373084
iter: 279 | loss: 4.372782
iter: 280 | loss: 4.372481
iter: 281 | loss: 4.372179
iter: 282 | loss: 4.371878
iter: 283 | loss: 4.371576
iter: 284 | loss: 4.371275
iter: 285 | loss: 4.370973
iter: 286 | loss: 4.370672
iter: 287 | loss: 4.370370
iter: 288 | loss: 4.370069
iter: 289 | loss: 4.369767
iter: 290 | loss: 4.369466
iter: 291 | loss: 4.369164
iter: 292 | loss: 4.368863
iter: 293 | loss: 4.368561
iter: 294 | loss: 4.368260
iter: 295 | loss: 4.367958
iter: 296 | loss: 4.367657
iter: 297 | loss: 4.367355
iter: 298 | loss: 4.367054
iter: 299 | loss: 4.366752
iter: 300 | loss: 4.366450
iter: 301 | loss: 4.366149
iter: 302 | loss: 4.365847
iter: 303 | loss: 4.365546
iter: 304 | loss: 4.365244
iter: 305 | loss: 4.364943
iter: 306 | loss: 4.364641
iter: 307 | loss: 4.364340
iter: 308 | loss: 4.364038
iter: 309 | loss: 4.363737
iter: 310 | loss: 4.363435
iter: 311 | loss: 4.363134
iter: 312 | loss: 4.362832
iter: 313 | loss: 4.362531
iter: 314 | loss: 4.362229
iter: 315 | loss: 4.361928
iter: 316 | loss: 4.361626
iter: 317 | loss: 4.361325
iter: 318 | loss: 4.361023
iter: 319 | loss: 4.360722
iter: 320 | loss: 4.360420
iter: 321 | loss: 4.360119
iter: 322 | loss: 4.359817
iter: 323 | loss: 4.359516
iter: 324 | loss: 4.359214
iter: 325 | loss: 4.358913
iter: 326 | loss: 4.358611
iter: 327 | loss: 4.358310
iter: 328 | loss: 4.358008
iter: 329 | loss: 4.357707
iter: 330 | loss: 4.357405
iter: 331 | loss: 4.357104
iter: 332 | loss: 4.356802
iter: 333 | loss: 4.356501
iter: 334 | loss: 4.356199
iter: 335 | loss: 4.355898
iter: 336 | loss: 4.355596
iter: 337 | loss: 4.355295
iter: 338 | loss: 4.354993
iter: 339 | loss: 4.354692
iter: 340 | loss: 4.354390
iter: 341 | loss: 4.354089
iter: 342 | loss: 4.353787
iter: 343 | loss: 4.353486
iter: 344 | loss: 4.353184
iter: 345 | loss: 4.352883
iter: 346 | loss: 4.352581
iter: 347 | loss: 4.352280
iter: 348 | loss: 4.351978
iter: 349 | loss: 4.351677
iter: 350 | loss: 4.351375
iter: 351 | loss: 4.351073
iter: 352 | loss: 4.350772
iter: 353 | loss: 4.350470
iter: 354 | loss: 4.350169
iter: 355 | loss: 4.349867
iter: 356 | loss: 4.349566
iter: 357 | loss: 4.349264
iter: 358 | loss: 4.348963
iter: 359 | loss: 4.348661
iter: 360 | loss: 4.348360
iter: 361 | loss: 4.348058
iter: 362 | loss: 4.347757
iter: 363 | loss: 4.347455
iter: 364 | loss: 4.347154
iter: 365 | loss: 4.346852
iter: 366 | loss: 4.346551
iter: 367 | loss: 4.346249
iter: 368 | loss: 4.345948
iter: 369 | loss: 4.345646
iter: 370 | loss: 4.345345
iter: 371 | loss: 4.345043
iter: 372 | loss: 4.344742
iter: 373 | loss: 4.344440
iter: 374 | loss: 4.344139
iter: 375 | loss: 4.343837
iter: 376 | loss: 4.343536
iter: 377 | loss: 4.343234
iter: 378 | loss: 4.342933
iter: 379 | loss: 4.342631
iter: 380 | loss: 4.342330
iter: 381 | loss: 4.342028
iter: 382 | loss: 4.341727
iter: 383 | loss: 4.341425
iter: 384 | loss: 4.341124
iter: 385 | loss: 4.340822
iter: 386 | loss: 4.340521
iter: 387 | loss: 4.340219
iter: 388 | loss: 4.339918
iter: 389 | loss: 4.339616
iter: 390 | loss: 4.339315
iter: 391 | loss: 4.339013
iter: 392 | loss: 4.338712
iter: 393 | loss: 4.338410
iter: 394 | loss: 4.338109
iter: 395 | loss: 4.337807
iter: 396 | loss: 4.337506
iter: 397 | loss: 4.337204
iter: 398 | loss: 4.336903
iter: 399 | loss: 4.336601
iter: 400 | loss: 4.336300
iter: 401 | loss: 4.335998
iter: 402 | loss: 4.335697
iter: 403 | loss: 4.335395
iter: 404 | loss: 4.335093
iter: 405 | loss: 4.334792
iter: 406 | loss: 4.334490
iter: 407 | loss: 4.334189
iter: 408 | loss: 4.333887
iter: 409 | loss: 4.333586
iter: 410 | loss: 4.333284
iter: 411 | loss: 4.332983
iter: 412 | loss: 4.332681
iter: 413 | loss: 4.332380
iter: 414 | loss: 4.332078
iter: 415 | loss: 4.331777
iter: 416 | loss: 4.331475
iter: 417 | loss: 4.331174
iter: 418 | loss: 4.330872
iter: 419 | loss: 4.330571
iter: 420 | loss: 4.330269
iter: 421 | loss: 4.329968
iter: 422 | loss: 4.329666
iter: 423 | loss: 4.329365
iter: 424 | loss: 4.329063
iter: 425 | loss: 4.328762
iter: 426 | loss: 4.328460
iter: 427 | loss: 4.328159
iter: 428 | loss: 4.327857
iter: 429 | loss: 4.327556
iter: 430 | loss: 4.327254
iter: 431 | loss: 4.326953
iter: 432 | loss: 4.326651
iter: 433 | loss: 4.326350
iter: 434 | loss: 4.326048
iter: 435 | loss: 4.325747
iter: 436 | loss: 4.325445
iter: 437 | loss: 4.325144
iter: 438 | loss: 4.324842
iter: 439 | loss: 4.324541
iter: 440 | loss: 4.324239
iter: 441 | loss: 4.323938
iter: 442 | loss: 4.323636
iter: 443 | loss: 4.323335
iter: 444 | loss: 4.323033
iter: 445 | loss: 4.322732
iter: 446 | loss: 4.322430
iter: 447 | loss: 4.322129
iter: 448 | loss: 4.321827
iter: 449 | loss: 4.321526
iter: 450 | loss: 4.321224
iter: 451 | loss: 4.320923
iter: 452 | loss: 4.320621
iter: 453 | loss: 4.320320
iter: 454 | loss: 4.320018
iter: 455 | loss: 4.319716
iter: 456 | loss: 4.319415
iter: 457 | loss: 4.319113
iter: 458 | loss: 4.318812
iter: 459 | loss: 4.318510
iter: 460 | loss: 4.318209
iter: 461 | loss: 4.317907
iter: 462 | loss: 4.317606
iter: 463 | loss: 4.317304
iter: 464 | loss: 4.317003
iter: 465 | loss: 4.316701
iter: 466 | loss: 4.316400
iter: 467 | loss: 4.316098
iter: 468 | loss: 4.315797
iter: 469 | loss: 4.315495
iter: 470 | loss: 4.315194
iter: 471 | loss: 4.314892
iter: 472 | loss: 4.314591
iter: 473 | loss: 4.314289
iter: 474 | loss: 4.313988
iter: 475 | loss: 4.313686
iter: 476 | loss: 4.313385
iter: 477 | loss: 4.313083
iter: 478 | loss: 4.312782
iter: 479 | loss: 4.312480
iter: 480 | loss: 4.312179
iter: 481 | loss: 4.311877
iter: 482 | loss: 4.311576
iter: 483 | loss: 4.311274
iter: 484 | loss: 4.310973
iter: 485 | loss: 4.310671
iter: 486 | loss: 4.310370
iter: 487 | loss: 4.310068
iter: 488 | loss: 4.309767
iter: 489 | loss: 4.309465
iter: 490 | loss: 4.309164
iter: 491 | loss: 4.308862
iter: 492 | loss: 4.308561
iter: 493 | loss: 4.308259
iter: 494 | loss: 4.307958
iter: 495 | loss: 4.307656
iter: 496 | loss: 4.307355
iter: 497 | loss: 4.307053
iter: 498 | loss: 4.306752
iter: 499 | loss: 4.306450
iter: 500 | loss: 4.306149
iter: 501 | loss: 4.305847
iter: 502 | loss: 4.305546
iter: 503 | loss: 4.305244
iter: 504 | loss: 4.304943
iter: 505 | loss: 4.304641
iter: 506 | loss: 4.304340
iter: 507 | loss: 4.304038
iter: 508 | loss: 4.303736
iter: 509 | loss: 4.303435
iter: 510 | loss: 4.303133
iter: 511 | loss: 4.302832
iter: 512 | loss: 4.302530
iter: 513 | loss: 4.302229
iter: 514 | loss: 4.301927
iter: 515 | loss: 4.301626
iter: 516 | loss: 4.301324
iter: 517 | loss: 4.301023
iter: 518 | loss: 4.300721
iter: 519 | loss: 4.300420
iter: 520 | loss: 4.300118
iter: 521 | loss: 4.299817
iter: 522 | loss: 4.299515
iter: 523 | loss: 4.299214
iter: 524 | loss: 4.298912
iter: 525 | loss: 4.298611
iter: 526 | loss: 4.298309
iter: 527 | loss: 4.298008
iter: 528 | loss: 4.297706
iter: 529 | loss: 4.297405
iter: 530 | loss: 4.297103
iter: 531 | loss: 4.296802
iter: 532 | loss: 4.296500
iter: 533 | loss: 4.296199
iter: 534 | loss: 4.295897
iter: 535 | loss: 4.295596
iter: 536 | loss: 4.295294
iter: 537 | loss: 4.294993
iter: 538 | loss: 4.294691
iter: 539 | loss: 4.294390
iter: 540 | loss: 4.294088
iter: 541 | loss: 4.293787
iter: 542 | loss: 4.293485
iter: 543 | loss: 4.293184
iter: 544 | loss: 4.292882
iter: 545 | loss: 4.292581
iter: 546 | loss: 4.292279
iter: 547 | loss: 4.291978
iter: 548 | loss: 4.291676
iter: 549 | loss: 4.291375
iter: 550 | loss: 4.291073
iter: 551 | loss: 4.290772
iter: 552 | loss: 4.290470
iter: 553 | loss: 4.290169
iter: 554 | loss: 4.289867
iter: 555 | loss: 4.289566
iter: 556 | loss: 4.289264
iter: 557 | loss: 4.288963
iter: 558 | loss: 4.288661
iter: 559 | loss: 4.288359
iter: 560 | loss: 4.288058
iter: 561 | loss: 4.287756
iter: 562 | loss: 4.287455
iter: 563 | loss: 4.287153
iter: 564 | loss: 4.286852
iter: 565 | loss: 4.286550
iter: 566 | loss: 4.286249
iter: 567 | loss: 4.285947
iter: 568 | loss: 4.285646
iter: 569 | loss: 4.285344
iter: 570 | loss: 4.285043
iter: 571 | loss: 4.284741
iter: 572 | loss: 4.284440
iter: 573 | loss: 4.284138
iter: 574 | loss: 4.283837
iter: 575 | loss: 4.283535
iter: 576 | loss: 4.283234
iter: 577 | loss: 4.282932
iter: 578 | loss: 4.282631
iter: 579 | loss: 4.282329
iter: 580 | loss: 4.282028
iter: 581 | loss: 4.281726
iter: 582 | loss: 4.281425
iter: 583 | loss: 4.281123
iter: 584 | loss: 4.280822
iter: 585 | loss: 4.280520
iter: 586 | loss: 4.280219
iter: 587 | loss: 4.279917
iter: 588 | loss: 4.279616
iter: 589 | loss: 4.279314
iter: 590 | loss: 4.279013
iter: 591 | loss: 4.278711
iter: 592 | loss: 4.278410
iter: 593 | loss: 4.278108
iter: 594 | loss: 4.277807
iter: 595 | loss: 4.277505
iter: 596 | loss: 4.277204
iter: 597 | loss: 4.276902
iter: 598 | loss: 4.276601
iter: 599 | loss: 4.276299
iter: 600 | loss: 4.275998
iter: 601 | loss: 4.275696
iter: 602 | loss: 4.275395
iter: 603 | loss: 4.275093
iter: 604 | loss: 4.274792
iter: 605 | loss: 4.274490
iter: 606 | loss: 4.274189
iter: 607 | loss: 4.273887
iter: 608 | loss: 4.273586
iter: 609 | loss: 4.273284
iter: 610 | loss: 4.272983
iter: 611 | loss: 4.272681
iter: 612 | loss: 4.272379
iter: 613 | loss: 4.272078
iter: 614 | loss: 4.271776
iter: 615 | loss: 4.271475
iter: 616 | loss: 4.271173
iter: 617 | loss: 4.270872
iter: 618 | loss: 4.270570
iter: 619 | loss: 4.270269
iter: 620 | loss: 4.269967
iter: 621 | loss: 4.269666
iter: 622 | loss: 4.269364
iter: 623 | loss: 4.269063
iter: 624 | loss: 4.268761
iter: 625 | loss: 4.268460
iter: 626 | loss: 4.268158
iter: 627 | loss: 4.267857
iter: 628 | loss: 4.267555
iter: 629 | loss: 4.267254
iter: 630 | loss: 4.266952
iter: 631 | loss: 4.266651
iter: 632 | loss: 4.266349
iter: 633 | loss: 4.266048
iter: 634 | loss: 4.265746
iter: 635 | loss: 4.265445
iter: 636 | loss: 4.265143
iter: 637 | loss: 4.264842
iter: 638 | loss: 4.264540
iter: 639 | loss: 4.264239
iter: 640 | loss: 4.263937
iter: 641 | loss: 4.263636
iter: 642 | loss: 4.263334
iter: 643 | loss: 4.263033
iter: 644 | loss: 4.262731
iter: 645 | loss: 4.262430
iter: 646 | loss: 4.262128
iter: 647 | loss: 4.261827
iter: 648 | loss: 4.261525
iter: 649 | loss: 4.261224
iter: 650 | loss: 4.260922
iter: 651 | loss: 4.260621
iter: 652 | loss: 4.260319
iter: 653 | loss: 4.260018
iter: 654 | loss: 4.259716
iter: 655 | loss: 4.259415
iter: 656 | loss: 4.259113
iter: 657 | loss: 4.258812
iter: 658 | loss: 4.258510
iter: 659 | loss: 4.258209
iter: 660 | loss: 4.257907
iter: 661 | loss: 4.257606
iter: 662 | loss: 4.257304
iter: 663 | loss: 4.257003
iter: 664 | loss: 4.256701
iter: 665 | loss: 4.256399
iter: 666 | loss: 4.256098
iter: 667 | loss: 4.255796
iter: 668 | loss: 4.255495
iter: 669 | loss: 4.255193
iter: 670 | loss: 4.254892
iter: 671 | loss: 4.254590
iter: 672 | loss: 4.254289
iter: 673 | loss: 4.253987
iter: 674 | loss: 4.253686
iter: 675 | loss: 4.253384
iter: 676 | loss: 4.253083
iter: 677 | loss: 4.252781
iter: 678 | loss: 4.252480
iter: 679 | loss: 4.252178
iter: 680 | loss: 4.251877
iter: 681 | loss: 4.251575
iter: 682 | loss: 4.251274
iter: 683 | loss: 4.250972
iter: 684 | loss: 4.250671
iter: 685 | loss: 4.250369
iter: 686 | loss: 4.250068
iter: 687 | loss: 4.249766
iter: 688 | loss: 4.249465
iter: 689 | loss: 4.249163
iter: 690 | loss: 4.248862
iter: 691 | loss: 4.248560
iter: 692 | loss: 4.248259
iter: 693 | loss: 4.247957
iter: 694 | loss: 4.247656
iter: 695 | loss: 4.247354
iter: 696 | loss: 4.247053
iter: 697 | loss: 4.246751
iter: 698 | loss: 4.246450
iter: 699 | loss: 4.246148
iter: 700 | loss: 4.245847
iter: 701 | loss: 4.245545
iter: 702 | loss: 4.245244
iter: 703 | loss: 4.244942
iter: 704 | loss: 4.244641
iter: 705 | loss: 4.244339
iter: 706 | loss: 4.244038
iter: 707 | loss: 4.243736
iter: 708 | loss: 4.243435
iter: 709 | loss: 4.243133
iter: 710 | loss: 4.242832
iter: 711 | loss: 4.242530
iter: 712 | loss: 4.242229
iter: 713 | loss: 4.241927
iter: 714 | loss: 4.241626
iter: 715 | loss: 4.241324
iter: 716 | loss: 4.241022
iter: 717 | loss: 4.240721
iter: 718 | loss: 4.240419
iter: 719 | loss: 4.240118
iter: 720 | loss: 4.239816
iter: 721 | loss: 4.239515
iter: 722 | loss: 4.239213
iter: 723 | loss: 4.238912
iter: 724 | loss: 4.238610
iter: 725 | loss: 4.238309
iter: 726 | loss: 4.238007
iter: 727 | loss: 4.237706
iter: 728 | loss: 4.237404
iter: 729 | loss: 4.237103
iter: 730 | loss: 4.236801
iter: 731 | loss: 4.236500
iter: 732 | loss: 4.236198
iter: 733 | loss: 4.235897
iter: 734 | loss: 4.235595
iter: 735 | loss: 4.235294
iter: 736 | loss: 4.234992
iter: 737 | loss: 4.234691
iter: 738 | loss: 4.234389
iter: 739 | loss: 4.234088
iter: 740 | loss: 4.233786
iter: 741 | loss: 4.233485
iter: 742 | loss: 4.233183
iter: 743 | loss: 4.232882
iter: 744 | loss: 4.232580
iter: 745 | loss: 4.232279
iter: 746 | loss: 4.231977
iter: 747 | loss: 4.231676
iter: 748 | loss: 4.231374
iter: 749 | loss: 4.231073
iter: 750 | loss: 4.230771
iter: 751 | loss: 4.230470
iter: 752 | loss: 4.230168
iter: 753 | loss: 4.229867
iter: 754 | loss: 4.229565
iter: 755 | loss: 4.229264
iter: 756 | loss: 4.228962
iter: 757 | loss: 4.228661
iter: 758 | loss: 4.228359
iter: 759 | loss: 4.228058
iter: 760 | loss: 4.227756
iter: 761 | loss: 4.227455
iter: 762 | loss: 4.227153
iter: 763 | loss: 4.226852
iter: 764 | loss: 4.226550
iter: 765 | loss: 4.226249
iter: 766 | loss: 4.225947
iter: 767 | loss: 4.225646
iter: 768 | loss: 4.225344
iter: 769 | loss: 4.225042
iter: 770 | loss: 4.224741
iter: 771 | loss: 4.224439
iter: 772 | loss: 4.224138
iter: 773 | loss: 4.223836
iter: 774 | loss: 4.223535
iter: 775 | loss: 4.223233
iter: 776 | loss: 4.222932
iter: 777 | loss: 4.222630
iter: 778 | loss: 4.222329
iter: 779 | loss: 4.222027
iter: 780 | loss: 4.221726
iter: 781 | loss: 4.221424
iter: 782 | loss: 4.221123
iter: 783 | loss: 4.220821
iter: 784 | loss: 4.220520
iter: 785 | loss: 4.220218
iter: 786 | loss: 4.219917
iter: 787 | loss: 4.219615
iter: 788 | loss: 4.219314
iter: 789 | loss: 4.219012
iter: 790 | loss: 4.218711
iter: 791 | loss: 4.218409
iter: 792 | loss: 4.218108
iter: 793 | loss: 4.217806
iter: 794 | loss: 4.217505
iter: 795 | loss: 4.217203
iter: 796 | loss: 4.216902
iter: 797 | loss: 4.216600
iter: 798 | loss: 4.216299
iter: 799 | loss: 4.215997
iter: 800 | loss: 4.215696
iter: 801 | loss: 4.215394
iter: 802 | loss: 4.215093
iter: 803 | loss: 4.214791
iter: 804 | loss: 4.214490
iter: 805 | loss: 4.214188
iter: 806 | loss: 4.213887
iter: 807 | loss: 4.213585
iter: 808 | loss: 4.213284
iter: 809 | loss: 4.212982
iter: 810 | loss: 4.212681
iter: 811 | loss: 4.212379
iter: 812 | loss: 4.212078
iter: 813 | loss: 4.211776
iter: 814 | loss: 4.211475
iter: 815 | loss: 4.211173
iter: 816 | loss: 4.210872
iter: 817 | loss: 4.210570
iter: 818 | loss: 4.210269
iter: 819 | loss: 4.209967
iter: 820 | loss: 4.209665
iter: 821 | loss: 4.209364
iter: 822 | loss: 4.209062
iter: 823 | loss: 4.208761
iter: 824 | loss: 4.208459
iter: 825 | loss: 4.208158
iter: 826 | loss: 4.207856
iter: 827 | loss: 4.207555
iter: 828 | loss: 4.207253
iter: 829 | loss: 4.206952
iter: 830 | loss: 4.206650
iter: 831 | loss: 4.206349
iter: 832 | loss: 4.206047
iter: 833 | loss: 4.205746
iter: 834 | loss: 4.205444
iter: 835 | loss: 4.205143
iter: 836 | loss: 4.204841
iter: 837 | loss: 4.204540
iter: 838 | loss: 4.204238
iter: 839 | loss: 4.203937
iter: 840 | loss: 4.203635
iter: 841 | loss: 4.203334
iter: 842 | loss: 4.203032
iter: 843 | loss: 4.202731
iter: 844 | loss: 4.202429
iter: 845 | loss: 4.202128
iter: 846 | loss: 4.201826
iter: 847 | loss: 4.201525
iter: 848 | loss: 4.201223
iter: 849 | loss: 4.200922
iter: 850 | loss: 4.200620
iter: 851 | loss: 4.200319
iter: 852 | loss: 4.200017
iter: 853 | loss: 4.199716
iter: 854 | loss: 4.199414
iter: 855 | loss: 4.199113
iter: 856 | loss: 4.198811
iter: 857 | loss: 4.198510
iter: 858 | loss: 4.198208
iter: 859 | loss: 4.197907
iter: 860 | loss: 4.197605
iter: 861 | loss: 4.197304
iter: 862 | loss: 4.197002
iter: 863 | loss: 4.196701
iter: 864 | loss: 4.196399
iter: 865 | loss: 4.196098
iter: 866 | loss: 4.195796
iter: 867 | loss: 4.195495
iter: 868 | loss: 4.195193
iter: 869 | loss: 4.194892
iter: 870 | loss: 4.194590
iter: 871 | loss: 4.194289
iter: 872 | loss: 4.193987
iter: 873 | loss: 4.193685
iter: 874 | loss: 4.193384
iter: 875 | loss: 4.193082
iter: 876 | loss: 4.192781
iter: 877 | loss: 4.192479
iter: 878 | loss: 4.192178
iter: 879 | loss: 4.191876
iter: 880 | loss: 4.191575
iter: 881 | loss: 4.191273
iter: 882 | loss: 4.190972
iter: 883 | loss: 4.190670
iter: 884 | loss: 4.190369
iter: 885 | loss: 4.190067
iter: 886 | loss: 4.189766
iter: 887 | loss: 4.189464
iter: 888 | loss: 4.189163
iter: 889 | loss: 4.188861
iter: 890 | loss: 4.188560
iter: 891 | loss: 4.188258
iter: 892 | loss: 4.187957
iter: 893 | loss: 4.187655
iter: 894 | loss: 4.187354
iter: 895 | loss: 4.187052
iter: 896 | loss: 4.186751
iter: 897 | loss: 4.186449
iter: 898 | loss: 4.186148
iter: 899 | loss: 4.185846
iter: 900 | loss: 4.185545
iter: 901 | loss: 4.185243
iter: 902 | loss: 4.184942
iter: 903 | loss: 4.184640
iter: 904 | loss: 4.184339
iter: 905 | loss: 4.184037
iter: 906 | loss: 4.183736
iter: 907 | loss: 4.183434
iter: 908 | loss: 4.183133
iter: 909 | loss: 4.182831
iter: 910 | loss: 4.182530
iter: 911 | loss: 4.182228
iter: 912 | loss: 4.181927
iter: 913 | loss: 4.181625
iter: 914 | loss: 4.181324
iter: 915 | loss: 4.181022
iter: 916 | loss: 4.180721
iter: 917 | loss: 4.180419
iter: 918 | loss: 4.180118
iter: 919 | loss: 4.179816
iter: 920 | loss: 4.179515
iter: 921 | loss: 4.179213
iter: 922 | loss: 4.178912
iter: 923 | loss: 4.178610
iter: 924 | loss: 4.178308
iter: 925 | loss: 4.178007
iter: 926 | loss: 4.177705
iter: 927 | loss: 4.177404
iter: 928 | loss: 4.177102
iter: 929 | loss: 4.176801
iter: 930 | loss: 4.176499
iter: 931 | loss: 4.176198
iter: 932 | loss: 4.175896
iter: 933 | loss: 4.175595
iter: 934 | loss: 4.175293
iter: 935 | loss: 4.174992
iter: 936 | loss: 4.174690
iter: 937 | loss: 4.174389
iter: 938 | loss: 4.174087
iter: 939 | loss: 4.173786
iter: 940 | loss: 4.173484
iter: 941 | loss: 4.173183
iter: 942 | loss: 4.172881
iter: 943 | loss: 4.172580
iter: 944 | loss: 4.172278
iter: 945 | loss: 4.171977
iter: 946 | loss: 4.171675
iter: 947 | loss: 4.171374
iter: 948 | loss: 4.171072
iter: 949 | loss: 4.170771
iter: 950 | loss: 4.170469
iter: 951 | loss: 4.170168
iter: 952 | loss: 4.169866
iter: 953 | loss: 4.169565
iter: 954 | loss: 4.169263
iter: 955 | loss: 4.168962
iter: 956 | loss: 4.168660
iter: 957 | loss: 4.168359
iter: 958 | loss: 4.168057
iter: 959 | loss: 4.167756
iter: 960 | loss: 4.167454
iter: 961 | loss: 4.167153
iter: 962 | loss: 4.166851
iter: 963 | loss: 4.166550
iter: 964 | loss: 4.166248
iter: 965 | loss: 4.165947
iter: 966 | loss: 4.165645
iter: 967 | loss: 4.165344
iter: 968 | loss: 4.165042
iter: 969 | loss: 4.164741
iter: 970 | loss: 4.164439
iter: 971 | loss: 4.164138
iter: 972 | loss: 4.163836
iter: 973 | loss: 4.163535
iter: 974 | loss: 4.163233
iter: 975 | loss: 4.162932
iter: 976 | loss: 4.162630
iter: 977 | loss: 4.162328
iter: 978 | loss: 4.162027
iter: 979 | loss: 4.161725
iter: 980 | loss: 4.161424
iter: 981 | loss: 4.161122
iter: 982 | loss: 4.160821
iter: 983 | loss: 4.160519
iter: 984 | loss: 4.160218
iter: 985 | loss: 4.159916
iter: 986 | loss: 4.159615
iter: 987 | loss: 4.159313
iter: 988 | loss: 4.159012
iter: 989 | loss: 4.158710
iter: 990 | loss: 4.158409
iter: 991 | loss: 4.158107
iter: 992 | loss: 4.157806
iter: 993 | loss: 4.157504
iter: 994 | loss: 4.157203
iter: 995 | loss: 4.156901
iter: 996 | loss: 4.156600
iter: 997 | loss: 4.156298
iter: 998 | loss: 4.155997
iter: 999 | loss: 4.155695
iter: 1000 | loss: 4.155394
iter: 1001 | loss: 4.155092
iter: 1002 | loss: 4.154791
iter: 1003 | loss: 4.154489
iter: 1004 | loss: 4.154188
iter: 1005 | loss: 4.153886
iter: 1006 | loss: 4.153585
iter: 1007 | loss: 4.153283
iter: 1008 | loss: 4.152982
iter: 1009 | loss: 4.152680
iter: 1010 | loss: 4.152379
iter: 1011 | loss: 4.152077
iter: 1012 | loss: 4.151776
iter: 1013 | loss: 4.151474
iter: 1014 | loss: 4.151173
iter: 1015 | loss: 4.150871
iter: 1016 | loss: 4.150570
iter: 1017 | loss: 4.150268
iter: 1018 | loss: 4.149967
iter: 1019 | loss: 4.149665
iter: 1020 | loss: 4.149364
iter: 1021 | loss: 4.149062
iter: 1022 | loss: 4.148761
iter: 1023 | loss: 4.148459
iter: 1024 | loss: 4.148158
iter: 1025 | loss: 4.147856
iter: 1026 | loss: 4.147555
iter: 1027 | loss: 4.147253
iter: 1028 | loss: 4.146952
iter: 1029 | loss: 4.146650
iter: 1030 | loss: 4.146348
iter: 1031 | loss: 4.146047
iter: 1032 | loss: 4.145745
iter: 1033 | loss: 4.145444
iter: 1034 | loss: 4.145142
iter: 1035 | loss: 4.144841
iter: 1036 | loss: 4.144539
iter: 1037 | loss: 4.144238
iter: 1038 | loss: 4.143936
iter: 1039 | loss: 4.143635
iter: 1040 | loss: 4.143333
iter: 1041 | loss: 4.143032
iter: 1042 | loss: 4.142730
iter: 1043 | loss: 4.142429
iter: 1044 | loss: 4.142127
iter: 1045 | loss: 4.141826
iter: 1046 | loss: 4.141524
iter: 1047 | loss: 4.141223
iter: 1048 | loss: 4.140921
iter: 1049 | loss: 4.140620
iter: 1050 | loss: 4.140318
iter: 1051 | loss: 4.140017
iter: 1052 | loss: 4.139715
iter: 1053 | loss: 4.139414
iter: 1054 | loss: 4.139112
iter: 1055 | loss: 4.138811
iter: 1056 | loss: 4.138509
iter: 1057 | loss: 4.138208
iter: 1058 | loss: 4.137906
iter: 1059 | loss: 4.137605
iter: 1060 | loss: 4.137303
iter: 1061 | loss: 4.137002
iter: 1062 | loss: 4.136700
iter: 1063 | loss: 4.136399
iter: 1064 | loss: 4.136097
iter: 1065 | loss: 4.135796
iter: 1066 | loss: 4.135494
iter: 1067 | loss: 4.135193
iter: 1068 | loss: 4.134891
iter: 1069 | loss: 4.134590
iter: 1070 | loss: 4.134288
iter: 1071 | loss: 4.133987
iter: 1072 | loss: 4.133685
iter: 1073 | loss: 4.133384
iter: 1074 | loss: 4.133082
iter: 1075 | loss: 4.132781
iter: 1076 | loss: 4.132479
iter: 1077 | loss: 4.132178
iter: 1078 | loss: 4.131876
iter: 1079 | loss: 4.131575
iter: 1080 | loss: 4.131273
iter: 1081 | loss: 4.130971
iter: 1082 | loss: 4.130670
iter: 1083 | loss: 4.130368
iter: 1084 | loss: 4.130067
iter: 1085 | loss: 4.129765
iter: 1086 | loss: 4.129464
iter: 1087 | loss: 4.129162
iter: 1088 | loss: 4.128861
iter: 1089 | loss: 4.128559
iter: 1090 | loss: 4.128258
iter: 1091 | loss: 4.127956
iter: 1092 | loss: 4.127655
iter: 1093 | loss: 4.127353
iter: 1094 | loss: 4.127052
iter: 1095 | loss: 4.126750
iter: 1096 | loss: 4.126449
iter: 1097 | loss: 4.126147
iter: 1098 | loss: 4.125846
iter: 1099 | loss: 4.125544
iter: 1100 | loss: 4.125243
iter: 1101 | loss: 4.124941
iter: 1102 | loss: 4.124640
iter: 1103 | loss: 4.124338
iter: 1104 | loss: 4.124037
iter: 1105 | loss: 4.123735
iter: 1106 | loss: 4.123434
iter: 1107 | loss: 4.123132
iter: 1108 | loss: 4.122831
iter: 1109 | loss: 4.122529
iter: 1110 | loss: 4.122228
iter: 1111 | loss: 4.121926
iter: 1112 | loss: 4.121625
iter: 1113 | loss: 4.121323
iter: 1114 | loss: 4.121022
iter: 1115 | loss: 4.120720
iter: 1116 | loss: 4.120419
iter: 1117 | loss: 4.120117
iter: 1118 | loss: 4.119816
iter: 1119 | loss: 4.119514
iter: 1120 | loss: 4.119213
iter: 1121 | loss: 4.118911
iter: 1122 | loss: 4.118610
iter: 1123 | loss: 4.118308
iter: 1124 | loss: 4.118007
iter: 1125 | loss: 4.117705
iter: 1126 | loss: 4.117404
iter: 1127 | loss: 4.117102
iter: 1128 | loss: 4.116801
iter: 1129 | loss: 4.116499
iter: 1130 | loss: 4.116198
iter: 1131 | loss: 4.115896
iter: 1132 | loss: 4.115595
iter: 1133 | loss: 4.115293
iter: 1134 | loss: 4.114991
iter: 1135 | loss: 4.114690
iter: 1136 | loss: 4.114388
iter: 1137 | loss: 4.114087
iter: 1138 | loss: 4.113785
iter: 1139 | loss: 4.113484
iter: 1140 | loss: 4.113182
iter: 1141 | loss: 4.112881
iter: 1142 | loss: 4.112579
iter: 1143 | loss: 4.112278
iter: 1144 | loss: 4.111976
iter: 1145 | loss: 4.111675
iter: 1146 | loss: 4.111373
iter: 1147 | loss: 4.111072
iter: 1148 | loss: 4.110770
iter: 1149 | loss: 4.110469
iter: 1150 | loss: 4.110167
iter: 1151 | loss: 4.109866
iter: 1152 | loss: 4.109564
iter: 1153 | loss: 4.109263
iter: 1154 | loss: 4.108961
iter: 1155 | loss: 4.108660
iter: 1156 | loss: 4.108358
iter: 1157 | loss: 4.108057
iter: 1158 | loss: 4.107755
iter: 1159 | loss: 4.107454
iter: 1160 | loss: 4.107152
iter: 1161 | loss: 4.106851
iter: 1162 | loss: 4.106549
iter: 1163 | loss: 4.106248
iter: 1164 | loss: 4.105946
iter: 1165 | loss: 4.105645
iter: 1166 | loss: 4.105343
iter: 1167 | loss: 4.105042
iter: 1168 | loss: 4.104740
iter: 1169 | loss: 4.104439
iter: 1170 | loss: 4.104137
iter: 1171 | loss: 4.103836
iter: 1172 | loss: 4.103534
iter: 1173 | loss: 4.103233
iter: 1174 | loss: 4.102931
iter: 1175 | loss: 4.102630
iter: 1176 | loss: 4.102328
iter: 1177 | loss: 4.102027
iter: 1178 | loss: 4.101725
iter: 1179 | loss: 4.101424
iter: 1180 | loss: 4.101122
iter: 1181 | loss: 4.100821
iter: 1182 | loss: 4.100519
iter: 1183 | loss: 4.100218
iter: 1184 | loss: 4.099916
iter: 1185 | loss: 4.099614
iter: 1186 | loss: 4.099313
iter: 1187 | loss: 4.099011
iter: 1188 | loss: 4.098710
iter: 1189 | loss: 4.098408
iter: 1190 | loss: 4.098107
iter: 1191 | loss: 4.097805
iter: 1192 | loss: 4.097504
iter: 1193 | loss: 4.097202
iter: 1194 | loss: 4.096901
iter: 1195 | loss: 4.096599
iter: 1196 | loss: 4.096298
iter: 1197 | loss: 4.095996
iter: 1198 | loss: 4.095695
iter: 1199 | loss: 4.095393
iter: 1200 | loss: 4.095092
iter: 1201 | loss: 4.094790
iter: 1202 | loss: 4.094489
iter: 1203 | loss: 4.094187
iter: 1204 | loss: 4.093886
iter: 1205 | loss: 4.093584
iter: 1206 | loss: 4.093283
iter: 1207 | loss: 4.092981
iter: 1208 | loss: 4.092680
iter: 1209 | loss: 4.092378
iter: 1210 | loss: 4.092077
iter: 1211 | loss: 4.091775
iter: 1212 | loss: 4.091474
iter: 1213 | loss: 4.091172
iter: 1214 | loss: 4.090871
iter: 1215 | loss: 4.090569
iter: 1216 | loss: 4.090268
iter: 1217 | loss: 4.089966
iter: 1218 | loss: 4.089665
iter: 1219 | loss: 4.089363
iter: 1220 | loss: 4.089062
iter: 1221 | loss: 4.088760
iter: 1222 | loss: 4.088459
iter: 1223 | loss: 4.088157
iter: 1224 | loss: 4.087856
iter: 1225 | loss: 4.087554
iter: 1226 | loss: 4.087253
iter: 1227 | loss: 4.086951
iter: 1228 | loss: 4.086650
iter: 1229 | loss: 4.086348
iter: 1230 | loss: 4.086047
iter: 1231 | loss: 4.085745
iter: 1232 | loss: 4.085444
iter: 1233 | loss: 4.085142
iter: 1234 | loss: 4.084841
iter: 1235 | loss: 4.084539
iter: 1236 | loss: 4.084238
iter: 1237 | loss: 4.083936
iter: 1238 | loss: 4.083634
iter: 1239 | loss: 4.083333
iter: 1240 | loss: 4.083031
iter: 1241 | loss: 4.082730
iter: 1242 | loss: 4.082428
iter: 1243 | loss: 4.082127
iter: 1244 | loss: 4.081825
iter: 1245 | loss: 4.081524
iter: 1246 | loss: 4.081222
iter: 1247 | loss: 4.080921
iter: 1248 | loss: 4.080619
iter: 1249 | loss: 4.080318
iter: 1250 | loss: 4.080016
iter: 1251 | loss: 4.079715
iter: 1252 | loss: 4.079413
iter: 1253 | loss: 4.079112
iter: 1254 | loss: 4.078810
iter: 1255 | loss: 4.078509
iter: 1256 | loss: 4.078207
iter: 1257 | loss: 4.077906
iter: 1258 | loss: 4.077604
iter: 1259 | loss: 4.077303
iter: 1260 | loss: 4.077001
iter: 1261 | loss: 4.076700
iter: 1262 | loss: 4.076398
iter: 1263 | loss: 4.076097
iter: 1264 | loss: 4.075795
iter: 1265 | loss: 4.075494
iter: 1266 | loss: 4.075192
iter: 1267 | loss: 4.074891
iter: 1268 | loss: 4.074589
iter: 1269 | loss: 4.074288
iter: 1270 | loss: 4.073986
iter: 1271 | loss: 4.073685
iter: 1272 | loss: 4.073383
iter: 1273 | loss: 4.073082
iter: 1274 | loss: 4.072780
iter: 1275 | loss: 4.072479
iter: 1276 | loss: 4.072177
iter: 1277 | loss: 4.071876
iter: 1278 | loss: 4.071574
iter: 1279 | loss: 4.071273
iter: 1280 | loss: 4.070971
iter: 1281 | loss: 4.070670
iter: 1282 | loss: 4.070368
iter: 1283 | loss: 4.070067
iter: 1284 | loss: 4.069765
iter: 1285 | loss: 4.069464
iter: 1286 | loss: 4.069162
iter: 1287 | loss: 4.068861
iter: 1288 | loss: 4.068559
iter: 1289 | loss: 4.068257
iter: 1290 | loss: 4.067956
iter: 1291 | loss: 4.067654
iter: 1292 | loss: 4.067353
iter: 1293 | loss: 4.067051
iter: 1294 | loss: 4.066750
iter: 1295 | loss: 4.066448
iter: 1296 | loss: 4.066147
iter: 1297 | loss: 4.065845
iter: 1298 | loss: 4.065544
iter: 1299 | loss: 4.065242
iter: 1300 | loss: 4.064941
iter: 1301 | loss: 4.064639
iter: 1302 | loss: 4.064338
iter: 1303 | loss: 4.064036
iter: 1304 | loss: 4.063735
iter: 1305 | loss: 4.063433
iter: 1306 | loss: 4.063132
iter: 1307 | loss: 4.062830
iter: 1308 | loss: 4.062529
iter: 1309 | loss: 4.062227
iter: 1310 | loss: 4.061926
iter: 1311 | loss: 4.061624
iter: 1312 | loss: 4.061323
iter: 1313 | loss: 4.061021
iter: 1314 | loss: 4.060720
iter: 1315 | loss: 4.060418
iter: 1316 | loss: 4.060117
iter: 1317 | loss: 4.059815
iter: 1318 | loss: 4.059514
iter: 1319 | loss: 4.059212
iter: 1320 | loss: 4.058911
iter: 1321 | loss: 4.058609
iter: 1322 | loss: 4.058308
iter: 1323 | loss: 4.058006
iter: 1324 | loss: 4.057705
iter: 1325 | loss: 4.057403
iter: 1326 | loss: 4.057102
iter: 1327 | loss: 4.056800
iter: 1328 | loss: 4.056499
iter: 1329 | loss: 4.056197
iter: 1330 | loss: 4.055896
iter: 1331 | loss: 4.055594
iter: 1332 | loss: 4.055293
iter: 1333 | loss: 4.054991
iter: 1334 | loss: 4.054690
iter: 1335 | loss: 4.054388
iter: 1336 | loss: 4.054087
iter: 1337 | loss: 4.053785
iter: 1338 | loss: 4.053484
iter: 1339 | loss: 4.053182
iter: 1340 | loss: 4.052881
iter: 1341 | loss: 4.052579
iter: 1342 | loss: 4.052277
iter: 1343 | loss: 4.051976
iter: 1344 | loss: 4.051674
iter: 1345 | loss: 4.051373
iter: 1346 | loss: 4.051071
iter: 1347 | loss: 4.050770
iter: 1348 | loss: 4.050468
iter: 1349 | loss: 4.050167
iter: 1350 | loss: 4.049865
iter: 1351 | loss: 4.049564
iter: 1352 | loss: 4.049262
iter: 1353 | loss: 4.048961
iter: 1354 | loss: 4.048659
iter: 1355 | loss: 4.048358
iter: 1356 | loss: 4.048056
iter: 1357 | loss: 4.047755
iter: 1358 | loss: 4.047453
iter: 1359 | loss: 4.047152
iter: 1360 | loss: 4.046850
iter: 1361 | loss: 4.046549
iter: 1362 | loss: 4.046247
iter: 1363 | loss: 4.045946
iter: 1364 | loss: 4.045644
iter: 1365 | loss: 4.045343
iter: 1366 | loss: 4.045041
iter: 1367 | loss: 4.044740
iter: 1368 | loss: 4.044438
iter: 1369 | loss: 4.044137
iter: 1370 | loss: 4.043835
iter: 1371 | loss: 4.043534
iter: 1372 | loss: 4.043232
iter: 1373 | loss: 4.042931
iter: 1374 | loss: 4.042629
iter: 1375 | loss: 4.042328
iter: 1376 | loss: 4.042026
iter: 1377 | loss: 4.041725
iter: 1378 | loss: 4.041423
iter: 1379 | loss: 4.041122
iter: 1380 | loss: 4.040820
iter: 1381 | loss: 4.040519
iter: 1382 | loss: 4.040217
iter: 1383 | loss: 4.039916
iter: 1384 | loss: 4.039614
iter: 1385 | loss: 4.039313
iter: 1386 | loss: 4.039011
iter: 1387 | loss: 4.038710
iter: 1388 | loss: 4.038408
iter: 1389 | loss: 4.038107
iter: 1390 | loss: 4.037805
iter: 1391 | loss: 4.037504
iter: 1392 | loss: 4.037202
iter: 1393 | loss: 4.036901
iter: 1394 | loss: 4.036599
iter: 1395 | loss: 4.036297
iter: 1396 | loss: 4.035996
iter: 1397 | loss: 4.035694
iter: 1398 | loss: 4.035393
iter: 1399 | loss: 4.035091
iter: 1400 | loss: 4.034790
iter: 1401 | loss: 4.034488
iter: 1402 | loss: 4.034187
iter: 1403 | loss: 4.033885
iter: 1404 | loss: 4.033584
iter: 1405 | loss: 4.033282
iter: 1406 | loss: 4.032981
iter: 1407 | loss: 4.032679
iter: 1408 | loss: 4.032378
iter: 1409 | loss: 4.032076
iter: 1410 | loss: 4.031775
iter: 1411 | loss: 4.031473
iter: 1412 | loss: 4.031172
iter: 1413 | loss: 4.030870
iter: 1414 | loss: 4.030569
iter: 1415 | loss: 4.030267
iter: 1416 | loss: 4.029966
iter: 1417 | loss: 4.029664
iter: 1418 | loss: 4.029363
iter: 1419 | loss: 4.029061
iter: 1420 | loss: 4.028760
iter: 1421 | loss: 4.028458
iter: 1422 | loss: 4.028157
iter: 1423 | loss: 4.027855
iter: 1424 | loss: 4.027554
iter: 1425 | loss: 4.027252
iter: 1426 | loss: 4.026951
iter: 1427 | loss: 4.026649
iter: 1428 | loss: 4.026348
iter: 1429 | loss: 4.026046
iter: 1430 | loss: 4.025745
iter: 1431 | loss: 4.025443
iter: 1432 | loss: 4.025142
iter: 1433 | loss: 4.024840
iter: 1434 | loss: 4.024539
iter: 1435 | loss: 4.024237
iter: 1436 | loss: 4.023936
iter: 1437 | loss: 4.023634
iter: 1438 | loss: 4.023333
iter: 1439 | loss: 4.023031
iter: 1440 | loss: 4.022730
iter: 1441 | loss: 4.022428
iter: 1442 | loss: 4.022127
iter: 1443 | loss: 4.021825
iter: 1444 | loss: 4.021524
iter: 1445 | loss: 4.021222
iter: 1446 | loss: 4.020920
iter: 1447 | loss: 4.020619
iter: 1448 | loss: 4.020317
iter: 1449 | loss: 4.020016
iter: 1450 | loss: 4.019714
iter: 1451 | loss: 4.019413
iter: 1452 | loss: 4.019111
iter: 1453 | loss: 4.018810
iter: 1454 | loss: 4.018508
iter: 1455 | loss: 4.018207
iter: 1456 | loss: 4.017905
iter: 1457 | loss: 4.017604
iter: 1458 | loss: 4.017302
iter: 1459 | loss: 4.017001
iter: 1460 | loss: 4.016699
iter: 1461 | loss: 4.016398
iter: 1462 | loss: 4.016096
iter: 1463 | loss: 4.015795
iter: 1464 | loss: 4.015493
iter: 1465 | loss: 4.015192
iter: 1466 | loss: 4.014890
iter: 1467 | loss: 4.014589
iter: 1468 | loss: 4.014287
iter: 1469 | loss: 4.013986
iter: 1470 | loss: 4.013684
iter: 1471 | loss: 4.013383
iter: 1472 | loss: 4.013081
iter: 1473 | loss: 4.012780
iter: 1474 | loss: 4.012478
iter: 1475 | loss: 4.012177
iter: 1476 | loss: 4.011875
iter: 1477 | loss: 4.011574
iter: 1478 | loss: 4.011272
iter: 1479 | loss: 4.010971
iter: 1480 | loss: 4.010669
iter: 1481 | loss: 4.010368
iter: 1482 | loss: 4.010066
iter: 1483 | loss: 4.009765
iter: 1484 | loss: 4.009463
iter: 1485 | loss: 4.009162
iter: 1486 | loss: 4.008860
iter: 1487 | loss: 4.008559
iter: 1488 | loss: 4.008257
iter: 1489 | loss: 4.007956
iter: 1490 | loss: 4.007654
iter: 1491 | loss: 4.007353
iter: 1492 | loss: 4.007051
iter: 1493 | loss: 4.006750
iter: 1494 | loss: 4.006448
iter: 1495 | loss: 4.006147
iter: 1496 | loss: 4.005845
iter: 1497 | loss: 4.005544
iter: 1498 | loss: 4.005242
iter: 1499 | loss: 4.004940
iter: 1500 | loss: 4.004639
iter: 1501 | loss: 4.004337
iter: 1502 | loss: 4.004036
iter: 1503 | loss: 4.003734
iter: 1504 | loss: 4.003433
iter: 1505 | loss: 4.003131
iter: 1506 | loss: 4.002830
iter: 1507 | loss: 4.002528
iter: 1508 | loss: 4.002227
iter: 1509 | loss: 4.001925
iter: 1510 | loss: 4.001624
iter: 1511 | loss: 4.001322
iter: 1512 | loss: 4.001021
iter: 1513 | loss: 4.000719
iter: 1514 | loss: 4.000418
iter: 1515 | loss: 4.000116
iter: 1516 | loss: 3.999815
iter: 1517 | loss: 3.999513
iter: 1518 | loss: 3.999212
iter: 1519 | loss: 3.998910
iter: 1520 | loss: 3.998609
iter: 1521 | loss: 3.998307
iter: 1522 | loss: 3.998006
iter: 1523 | loss: 3.997704
iter: 1524 | loss: 3.997403
iter: 1525 | loss: 3.997101
iter: 1526 | loss: 3.996800
iter: 1527 | loss: 3.996498
iter: 1528 | loss: 3.996197
iter: 1529 | loss: 3.995895
iter: 1530 | loss: 3.995594
iter: 1531 | loss: 3.995292
iter: 1532 | loss: 3.994991
iter: 1533 | loss: 3.994689
iter: 1534 | loss: 3.994388
iter: 1535 | loss: 3.994086
iter: 1536 | loss: 3.993785
iter: 1537 | loss: 3.993483
iter: 1538 | loss: 3.993182
iter: 1539 | loss: 3.992880
iter: 1540 | loss: 3.992579
iter: 1541 | loss: 3.992277
iter: 1542 | loss: 3.991976
iter: 1543 | loss: 3.991674
iter: 1544 | loss: 3.991373
iter: 1545 | loss: 3.991071
iter: 1546 | loss: 3.990770
iter: 1547 | loss: 3.990468
iter: 1548 | loss: 3.990167
iter: 1549 | loss: 3.989865
iter: 1550 | loss: 3.989563
iter: 1551 | loss: 3.989262
iter: 1552 | loss: 3.988960
iter: 1553 | loss: 3.988659
iter: 1554 | loss: 3.988357
iter: 1555 | loss: 3.988056
iter: 1556 | loss: 3.987754
iter: 1557 | loss: 3.987453
iter: 1558 | loss: 3.987151
iter: 1559 | loss: 3.986850
iter: 1560 | loss: 3.986548
iter: 1561 | loss: 3.986247
iter: 1562 | loss: 3.985945
iter: 1563 | loss: 3.985644
iter: 1564 | loss: 3.985342
iter: 1565 | loss: 3.985041
iter: 1566 | loss: 3.984739
iter: 1567 | loss: 3.984438
iter: 1568 | loss: 3.984136
iter: 1569 | loss: 3.983835
iter: 1570 | loss: 3.983533
iter: 1571 | loss: 3.983232
iter: 1572 | loss: 3.982930
iter: 1573 | loss: 3.982629
iter: 1574 | loss: 3.982327
iter: 1575 | loss: 3.982026
iter: 1576 | loss: 3.981724
iter: 1577 | loss: 3.981423
iter: 1578 | loss: 3.981121
iter: 1579 | loss: 3.980820
iter: 1580 | loss: 3.980518
iter: 1581 | loss: 3.980217
iter: 1582 | loss: 3.979915
iter: 1583 | loss: 3.979614
iter: 1584 | loss: 3.979312
iter: 1585 | loss: 3.979011
iter: 1586 | loss: 3.978709
iter: 1587 | loss: 3.978408
iter: 1588 | loss: 3.978106
iter: 1589 | loss: 3.977805
iter: 1590 | loss: 3.977503
iter: 1591 | loss: 3.977202
iter: 1592 | loss: 3.976900
iter: 1593 | loss: 3.976599
iter: 1594 | loss: 3.976297
iter: 1595 | loss: 3.975996
iter: 1596 | loss: 3.975694
iter: 1597 | loss: 3.975393
iter: 1598 | loss: 3.975091
iter: 1599 | loss: 3.974790
iter: 1600 | loss: 3.974488
iter: 1601 | loss: 3.974187
iter: 1602 | loss: 3.973885
iter: 1603 | loss: 3.973583
iter: 1604 | loss: 3.973282
iter: 1605 | loss: 3.972980
iter: 1606 | loss: 3.972679
iter: 1607 | loss: 3.972377
iter: 1608 | loss: 3.972076
iter: 1609 | loss: 3.971774
iter: 1610 | loss: 3.971473
iter: 1611 | loss: 3.971171
iter: 1612 | loss: 3.970870
iter: 1613 | loss: 3.970568
iter: 1614 | loss: 3.970267
iter: 1615 | loss: 3.969965
iter: 1616 | loss: 3.969664
iter: 1617 | loss: 3.969362
iter: 1618 | loss: 3.969061
iter: 1619 | loss: 3.968759
iter: 1620 | loss: 3.968458
iter: 1621 | loss: 3.968156
iter: 1622 | loss: 3.967855
iter: 1623 | loss: 3.967553
iter: 1624 | loss: 3.967252
iter: 1625 | loss: 3.966950
iter: 1626 | loss: 3.966649
iter: 1627 | loss: 3.966347
iter: 1628 | loss: 3.966046
iter: 1629 | loss: 3.965744
iter: 1630 | loss: 3.965443
iter: 1631 | loss: 3.965141
iter: 1632 | loss: 3.964840
iter: 1633 | loss: 3.964538
iter: 1634 | loss: 3.964237
iter: 1635 | loss: 3.963935
iter: 1636 | loss: 3.963634
iter: 1637 | loss: 3.963332
iter: 1638 | loss: 3.963031
iter: 1639 | loss: 3.962729
iter: 1640 | loss: 3.962428
iter: 1641 | loss: 3.962126
iter: 1642 | loss: 3.961825
iter: 1643 | loss: 3.961523
iter: 1644 | loss: 3.961222
iter: 1645 | loss: 3.960920
iter: 1646 | loss: 3.960619
iter: 1647 | loss: 3.960317
iter: 1648 | loss: 3.960016
iter: 1649 | loss: 3.959714
iter: 1650 | loss: 3.959413
iter: 1651 | loss: 3.959111
iter: 1652 | loss: 3.958810
iter: 1653 | loss: 3.958508
iter: 1654 | loss: 3.958206
iter: 1655 | loss: 3.957905
iter: 1656 | loss: 3.957603
iter: 1657 | loss: 3.957302
iter: 1658 | loss: 3.957000
iter: 1659 | loss: 3.956699
iter: 1660 | loss: 3.956397
iter: 1661 | loss: 3.956096
iter: 1662 | loss: 3.955794
iter: 1663 | loss: 3.955493
iter: 1664 | loss: 3.955191
iter: 1665 | loss: 3.954890
iter: 1666 | loss: 3.954588
iter: 1667 | loss: 3.954287
iter: 1668 | loss: 3.953985
iter: 1669 | loss: 3.953684
iter: 1670 | loss: 3.953382
iter: 1671 | loss: 3.953081
iter: 1672 | loss: 3.952779
iter: 1673 | loss: 3.952478
iter: 1674 | loss: 3.952176
iter: 1675 | loss: 3.951875
iter: 1676 | loss: 3.951573
iter: 1677 | loss: 3.951272
iter: 1678 | loss: 3.950970
iter: 1679 | loss: 3.950669
iter: 1680 | loss: 3.950367
iter: 1681 | loss: 3.950066
iter: 1682 | loss: 3.949764
iter: 1683 | loss: 3.949463
iter: 1684 | loss: 3.949161
iter: 1685 | loss: 3.948860
iter: 1686 | loss: 3.948558
iter: 1687 | loss: 3.948257
iter: 1688 | loss: 3.947955
iter: 1689 | loss: 3.947654
iter: 1690 | loss: 3.947352
iter: 1691 | loss: 3.947051
iter: 1692 | loss: 3.946749
iter: 1693 | loss: 3.946448
iter: 1694 | loss: 3.946146
iter: 1695 | loss: 3.945845
iter: 1696 | loss: 3.945543
iter: 1697 | loss: 3.945242
iter: 1698 | loss: 3.944940
iter: 1699 | loss: 3.944639
iter: 1700 | loss: 3.944337
iter: 1701 | loss: 3.944036
iter: 1702 | loss: 3.943734
iter: 1703 | loss: 3.943433
iter: 1704 | loss: 3.943131
iter: 1705 | loss: 3.942830
iter: 1706 | loss: 3.942528
iter: 1707 | loss: 3.942226
iter: 1708 | loss: 3.941925
iter: 1709 | loss: 3.941623
iter: 1710 | loss: 3.941322
iter: 1711 | loss: 3.941020
iter: 1712 | loss: 3.940719
iter: 1713 | loss: 3.940417
iter: 1714 | loss: 3.940116
iter: 1715 | loss: 3.939814
iter: 1716 | loss: 3.939513
iter: 1717 | loss: 3.939211
iter: 1718 | loss: 3.938910
iter: 1719 | loss: 3.938608
iter: 1720 | loss: 3.938307
iter: 1721 | loss: 3.938005
iter: 1722 | loss: 3.937704
iter: 1723 | loss: 3.937402
iter: 1724 | loss: 3.937101
iter: 1725 | loss: 3.936799
iter: 1726 | loss: 3.936498
iter: 1727 | loss: 3.936196
iter: 1728 | loss: 3.935895
iter: 1729 | loss: 3.935593
iter: 1730 | loss: 3.935292
iter: 1731 | loss: 3.934990
iter: 1732 | loss: 3.934689
iter: 1733 | loss: 3.934387
iter: 1734 | loss: 3.934086
iter: 1735 | loss: 3.933784
iter: 1736 | loss: 3.933483
iter: 1737 | loss: 3.933181
iter: 1738 | loss: 3.932880
iter: 1739 | loss: 3.932578
iter: 1740 | loss: 3.932277
iter: 1741 | loss: 3.931975
iter: 1742 | loss: 3.931674
iter: 1743 | loss: 3.931372
iter: 1744 | loss: 3.931071
iter: 1745 | loss: 3.930769
iter: 1746 | loss: 3.930468
iter: 1747 | loss: 3.930166
iter: 1748 | loss: 3.929865
iter: 1749 | loss: 3.929563
iter: 1750 | loss: 3.929262
iter: 1751 | loss: 3.928960
iter: 1752 | loss: 3.928659
iter: 1753 | loss: 3.928357
iter: 1754 | loss: 3.928056
iter: 1755 | loss: 3.927754
iter: 1756 | loss: 3.927453
iter: 1757 | loss: 3.927151
iter: 1758 | loss: 3.926849
iter: 1759 | loss: 3.926548
iter: 1760 | loss: 3.926246
iter: 1761 | loss: 3.925945
iter: 1762 | loss: 3.925643
iter: 1763 | loss: 3.925342
iter: 1764 | loss: 3.925040
iter: 1765 | loss: 3.924739
iter: 1766 | loss: 3.924437
iter: 1767 | loss: 3.924136
iter: 1768 | loss: 3.923834
iter: 1769 | loss: 3.923533
iter: 1770 | loss: 3.923231
iter: 1771 | loss: 3.922930
iter: 1772 | loss: 3.922628
iter: 1773 | loss: 3.922327
iter: 1774 | loss: 3.922025
iter: 1775 | loss: 3.921724
iter: 1776 | loss: 3.921422
iter: 1777 | loss: 3.921121
iter: 1778 | loss: 3.920819
iter: 1779 | loss: 3.920518
iter: 1780 | loss: 3.920216
iter: 1781 | loss: 3.919915
iter: 1782 | loss: 3.919613
iter: 1783 | loss: 3.919312
iter: 1784 | loss: 3.919010
iter: 1785 | loss: 3.918709
iter: 1786 | loss: 3.918407
iter: 1787 | loss: 3.918106
iter: 1788 | loss: 3.917804
iter: 1789 | loss: 3.917503
iter: 1790 | loss: 3.917201
iter: 1791 | loss: 3.916900
iter: 1792 | loss: 3.916598
iter: 1793 | loss: 3.916297
iter: 1794 | loss: 3.915995
iter: 1795 | loss: 3.915694
iter: 1796 | loss: 3.915392
iter: 1797 | loss: 3.915091
iter: 1798 | loss: 3.914789
iter: 1799 | loss: 3.914488
iter: 1800 | loss: 3.914186
iter: 1801 | loss: 3.913885
iter: 1802 | loss: 3.913583
iter: 1803 | loss: 3.913282
iter: 1804 | loss: 3.912980
iter: 1805 | loss: 3.912679
iter: 1806 | loss: 3.912377
iter: 1807 | loss: 3.912076
iter: 1808 | loss: 3.911774
iter: 1809 | loss: 3.911473
iter: 1810 | loss: 3.911171
iter: 1811 | loss: 3.910869
iter: 1812 | loss: 3.910568
iter: 1813 | loss: 3.910266
iter: 1814 | loss: 3.909965
iter: 1815 | loss: 3.909663
iter: 1816 | loss: 3.909362
iter: 1817 | loss: 3.909060
iter: 1818 | loss: 3.908759
iter: 1819 | loss: 3.908457
iter: 1820 | loss: 3.908156
iter: 1821 | loss: 3.907854
iter: 1822 | loss: 3.907553
iter: 1823 | loss: 3.907251
iter: 1824 | loss: 3.906950
iter: 1825 | loss: 3.906648
iter: 1826 | loss: 3.906347
iter: 1827 | loss: 3.906045
iter: 1828 | loss: 3.905744
iter: 1829 | loss: 3.905442
iter: 1830 | loss: 3.905141
iter: 1831 | loss: 3.904839
iter: 1832 | loss: 3.904538
iter: 1833 | loss: 3.904236
iter: 1834 | loss: 3.903935
iter: 1835 | loss: 3.903633
iter: 1836 | loss: 3.903332
iter: 1837 | loss: 3.903030
iter: 1838 | loss: 3.902729
iter: 1839 | loss: 3.902427
iter: 1840 | loss: 3.902126
iter: 1841 | loss: 3.901824
iter: 1842 | loss: 3.901523
iter: 1843 | loss: 3.901221
iter: 1844 | loss: 3.900920
iter: 1845 | loss: 3.900618
iter: 1846 | loss: 3.900317
iter: 1847 | loss: 3.900015
iter: 1848 | loss: 3.899714
iter: 1849 | loss: 3.899412
iter: 1850 | loss: 3.899111
iter: 1851 | loss: 3.898809
iter: 1852 | loss: 3.898508
iter: 1853 | loss: 3.898206
iter: 1854 | loss: 3.897905
iter: 1855 | loss: 3.897603
iter: 1856 | loss: 3.897302
iter: 1857 | loss: 3.897000
iter: 1858 | loss: 3.896699
iter: 1859 | loss: 3.896397
iter: 1860 | loss: 3.896096
iter: 1861 | loss: 3.895794
iter: 1862 | loss: 3.895493
iter: 1863 | loss: 3.895191
iter: 1864 | loss: 3.894889
iter: 1865 | loss: 3.894588
iter: 1866 | loss: 3.894286
iter: 1867 | loss: 3.893985
iter: 1868 | loss: 3.893683
iter: 1869 | loss: 3.893382
iter: 1870 | loss: 3.893080
iter: 1871 | loss: 3.892779
iter: 1872 | loss: 3.892477
iter: 1873 | loss: 3.892176
iter: 1874 | loss: 3.891874
iter: 1875 | loss: 3.891573
iter: 1876 | loss: 3.891271
iter: 1877 | loss: 3.890970
iter: 1878 | loss: 3.890668
iter: 1879 | loss: 3.890367
iter: 1880 | loss: 3.890065
iter: 1881 | loss: 3.889764
iter: 1882 | loss: 3.889462
iter: 1883 | loss: 3.889161
iter: 1884 | loss: 3.888859
iter: 1885 | loss: 3.888558
iter: 1886 | loss: 3.888256
iter: 1887 | loss: 3.887955
iter: 1888 | loss: 3.887653
iter: 1889 | loss: 3.887352
iter: 1890 | loss: 3.887050
iter: 1891 | loss: 3.886749
iter: 1892 | loss: 3.886447
iter: 1893 | loss: 3.886146
iter: 1894 | loss: 3.885844
iter: 1895 | loss: 3.885543
iter: 1896 | loss: 3.885241
iter: 1897 | loss: 3.884940
iter: 1898 | loss: 3.884638
iter: 1899 | loss: 3.884337
iter: 1900 | loss: 3.884035
iter: 1901 | loss: 3.883734
iter: 1902 | loss: 3.883432
iter: 1903 | loss: 3.883131
iter: 1904 | loss: 3.882829
iter: 1905 | loss: 3.882528
iter: 1906 | loss: 3.882226
iter: 1907 | loss: 3.881925
iter: 1908 | loss: 3.881623
iter: 1909 | loss: 3.881322
iter: 1910 | loss: 3.881020
iter: 1911 | loss: 3.880719
iter: 1912 | loss: 3.880417
iter: 1913 | loss: 3.880116
iter: 1914 | loss: 3.879814
iter: 1915 | loss: 3.879512
iter: 1916 | loss: 3.879211
iter: 1917 | loss: 3.878909
iter: 1918 | loss: 3.878608
iter: 1919 | loss: 3.878306
iter: 1920 | loss: 3.878005
iter: 1921 | loss: 3.877703
iter: 1922 | loss: 3.877402
iter: 1923 | loss: 3.877100
iter: 1924 | loss: 3.876799
iter: 1925 | loss: 3.876497
iter: 1926 | loss: 3.876196
iter: 1927 | loss: 3.875894
iter: 1928 | loss: 3.875593
iter: 1929 | loss: 3.875291
iter: 1930 | loss: 3.874990
iter: 1931 | loss: 3.874688
iter: 1932 | loss: 3.874387
iter: 1933 | loss: 3.874085
iter: 1934 | loss: 3.873784
iter: 1935 | loss: 3.873482
iter: 1936 | loss: 3.873181
iter: 1937 | loss: 3.872879
iter: 1938 | loss: 3.872578
iter: 1939 | loss: 3.872276
iter: 1940 | loss: 3.871975
iter: 1941 | loss: 3.871673
iter: 1942 | loss: 3.871372
iter: 1943 | loss: 3.871070
iter: 1944 | loss: 3.870769
iter: 1945 | loss: 3.870467
iter: 1946 | loss: 3.870166
iter: 1947 | loss: 3.869864
iter: 1948 | loss: 3.869563
iter: 1949 | loss: 3.869261
iter: 1950 | loss: 3.868960
iter: 1951 | loss: 3.868658
iter: 1952 | loss: 3.868357
iter: 1953 | loss: 3.868055
iter: 1954 | loss: 3.867754
iter: 1955 | loss: 3.867452
iter: 1956 | loss: 3.867151
iter: 1957 | loss: 3.866849
iter: 1958 | loss: 3.866548
iter: 1959 | loss: 3.866246
iter: 1960 | loss: 3.865945
iter: 1961 | loss: 3.865643
iter: 1962 | loss: 3.865342
iter: 1963 | loss: 3.865040
iter: 1964 | loss: 3.864739
iter: 1965 | loss: 3.864437
iter: 1966 | loss: 3.864136
iter: 1967 | loss: 3.863834
iter: 1968 | loss: 3.863532
iter: 1969 | loss: 3.863231
iter: 1970 | loss: 3.862929
iter: 1971 | loss: 3.862628
iter: 1972 | loss: 3.862326
iter: 1973 | loss: 3.862025
iter: 1974 | loss: 3.861723
iter: 1975 | loss: 3.861422
iter: 1976 | loss: 3.861120
iter: 1977 | loss: 3.860819
iter: 1978 | loss: 3.860517
iter: 1979 | loss: 3.860216
iter: 1980 | loss: 3.859914
iter: 1981 | loss: 3.859613
iter: 1982 | loss: 3.859311
iter: 1983 | loss: 3.859010
iter: 1984 | loss: 3.858708
iter: 1985 | loss: 3.858407
iter: 1986 | loss: 3.858105
iter: 1987 | loss: 3.857804
iter: 1988 | loss: 3.857502
iter: 1989 | loss: 3.857201
iter: 1990 | loss: 3.856899
iter: 1991 | loss: 3.856598
iter: 1992 | loss: 3.856296
iter: 1993 | loss: 3.855995
iter: 1994 | loss: 3.855693
iter: 1995 | loss: 3.855392
iter: 1996 | loss: 3.855090
iter: 1997 | loss: 3.854789
iter: 1998 | loss: 3.854487
iter: 1999 | loss: 3.854186
iter: 2000 | loss: 3.853884
iter: 2001 | loss: 3.853583
iter: 2002 | loss: 3.853281
iter: 2003 | loss: 3.852980
iter: 2004 | loss: 3.852678
iter: 2005 | loss: 3.852377
iter: 2006 | loss: 3.852075
iter: 2007 | loss: 3.851774
iter: 2008 | loss: 3.851472
iter: 2009 | loss: 3.851171
iter: 2010 | loss: 3.850869
iter: 2011 | loss: 3.850568
iter: 2012 | loss: 3.850266
iter: 2013 | loss: 3.849965
iter: 2014 | loss: 3.849663
iter: 2015 | loss: 3.849362
iter: 2016 | loss: 3.849060
iter: 2017 | loss: 3.848759
iter: 2018 | loss: 3.848457
iter: 2019 | loss: 3.848155
iter: 2020 | loss: 3.847854
iter: 2021 | loss: 3.847552
iter: 2022 | loss: 3.847251
iter: 2023 | loss: 3.846949
iter: 2024 | loss: 3.846648
iter: 2025 | loss: 3.846346
iter: 2026 | loss: 3.846045
iter: 2027 | loss: 3.845743
iter: 2028 | loss: 3.845442
iter: 2029 | loss: 3.845140
iter: 2030 | loss: 3.844839
iter: 2031 | loss: 3.844537
iter: 2032 | loss: 3.844236
iter: 2033 | loss: 3.843934
iter: 2034 | loss: 3.843633
iter: 2035 | loss: 3.843331
iter: 2036 | loss: 3.843030
iter: 2037 | loss: 3.842728
iter: 2038 | loss: 3.842427
iter: 2039 | loss: 3.842125
iter: 2040 | loss: 3.841824
iter: 2041 | loss: 3.841522
iter: 2042 | loss: 3.841221
iter: 2043 | loss: 3.840919
iter: 2044 | loss: 3.840618
iter: 2045 | loss: 3.840316
iter: 2046 | loss: 3.840015
iter: 2047 | loss: 3.839713
iter: 2048 | loss: 3.839412
iter: 2049 | loss: 3.839110
iter: 2050 | loss: 3.838809
iter: 2051 | loss: 3.838507
iter: 2052 | loss: 3.838206
iter: 2053 | loss: 3.837904
iter: 2054 | loss: 3.837603
iter: 2055 | loss: 3.837301
iter: 2056 | loss: 3.837000
iter: 2057 | loss: 3.836698
iter: 2058 | loss: 3.836397
iter: 2059 | loss: 3.836095
iter: 2060 | loss: 3.835794
iter: 2061 | loss: 3.835492
iter: 2062 | loss: 3.835191
iter: 2063 | loss: 3.834889
iter: 2064 | loss: 3.834588
iter: 2065 | loss: 3.834286
iter: 2066 | loss: 3.833985
iter: 2067 | loss: 3.833683
iter: 2068 | loss: 3.833382
iter: 2069 | loss: 3.833080
iter: 2070 | loss: 3.832779
iter: 2071 | loss: 3.832477
iter: 2072 | loss: 3.832175
iter: 2073 | loss: 3.831874
iter: 2074 | loss: 3.831572
iter: 2075 | loss: 3.831271
iter: 2076 | loss: 3.830969
iter: 2077 | loss: 3.830668
iter: 2078 | loss: 3.830366
iter: 2079 | loss: 3.830065
iter: 2080 | loss: 3.829763
iter: 2081 | loss: 3.829462
iter: 2082 | loss: 3.829160
iter: 2083 | loss: 3.828859
iter: 2084 | loss: 3.828557
iter: 2085 | loss: 3.828256
iter: 2086 | loss: 3.827954
iter: 2087 | loss: 3.827653
iter: 2088 | loss: 3.827351
iter: 2089 | loss: 3.827050
iter: 2090 | loss: 3.826748
iter: 2091 | loss: 3.826447
iter: 2092 | loss: 3.826145
iter: 2093 | loss: 3.825844
iter: 2094 | loss: 3.825542
iter: 2095 | loss: 3.825241
iter: 2096 | loss: 3.824939
iter: 2097 | loss: 3.824638
iter: 2098 | loss: 3.824336
iter: 2099 | loss: 3.824035
iter: 2100 | loss: 3.823733
iter: 2101 | loss: 3.823432
iter: 2102 | loss: 3.823130
iter: 2103 | loss: 3.822829
iter: 2104 | loss: 3.822527
iter: 2105 | loss: 3.822226
iter: 2106 | loss: 3.821924
iter: 2107 | loss: 3.821623
iter: 2108 | loss: 3.821321
iter: 2109 | loss: 3.821020
iter: 2110 | loss: 3.820718
iter: 2111 | loss: 3.820417
iter: 2112 | loss: 3.820115
iter: 2113 | loss: 3.819814
iter: 2114 | loss: 3.819512
iter: 2115 | loss: 3.819211
iter: 2116 | loss: 3.818909
iter: 2117 | loss: 3.818608
iter: 2118 | loss: 3.818306
iter: 2119 | loss: 3.818005
iter: 2120 | loss: 3.817703
iter: 2121 | loss: 3.817402
iter: 2122 | loss: 3.817100
iter: 2123 | loss: 3.816798
iter: 2124 | loss: 3.816497
iter: 2125 | loss: 3.816195
iter: 2126 | loss: 3.815894
iter: 2127 | loss: 3.815592
iter: 2128 | loss: 3.815291
iter: 2129 | loss: 3.814989
iter: 2130 | loss: 3.814688
iter: 2131 | loss: 3.814386
iter: 2132 | loss: 3.814085
iter: 2133 | loss: 3.813783
iter: 2134 | loss: 3.813482
iter: 2135 | loss: 3.813180
iter: 2136 | loss: 3.812879
iter: 2137 | loss: 3.812577
iter: 2138 | loss: 3.812276
iter: 2139 | loss: 3.811974
iter: 2140 | loss: 3.811673
iter: 2141 | loss: 3.811371
iter: 2142 | loss: 3.811070
iter: 2143 | loss: 3.810768
iter: 2144 | loss: 3.810467
iter: 2145 | loss: 3.810165
iter: 2146 | loss: 3.809864
iter: 2147 | loss: 3.809562
iter: 2148 | loss: 3.809261
iter: 2149 | loss: 3.808959
iter: 2150 | loss: 3.808658
iter: 2151 | loss: 3.808356
iter: 2152 | loss: 3.808055
iter: 2153 | loss: 3.807753
iter: 2154 | loss: 3.807452
iter: 2155 | loss: 3.807150
iter: 2156 | loss: 3.806849
iter: 2157 | loss: 3.806547
iter: 2158 | loss: 3.806246
iter: 2159 | loss: 3.805944
iter: 2160 | loss: 3.805643
iter: 2161 | loss: 3.805341
iter: 2162 | loss: 3.805040
iter: 2163 | loss: 3.804738
iter: 2164 | loss: 3.804437
iter: 2165 | loss: 3.804135
iter: 2166 | loss: 3.803834
iter: 2167 | loss: 3.803532
iter: 2168 | loss: 3.803231
iter: 2169 | loss: 3.802929
iter: 2170 | loss: 3.802628
iter: 2171 | loss: 3.802326
iter: 2172 | loss: 3.802025
iter: 2173 | loss: 3.801723
iter: 2174 | loss: 3.801422
iter: 2175 | loss: 3.801120
iter: 2176 | loss: 3.800818
iter: 2177 | loss: 3.800517
iter: 2178 | loss: 3.800215
iter: 2179 | loss: 3.799914
iter: 2180 | loss: 3.799612
iter: 2181 | loss: 3.799311
iter: 2182 | loss: 3.799009
iter: 2183 | loss: 3.798708
iter: 2184 | loss: 3.798406
iter: 2185 | loss: 3.798105
iter: 2186 | loss: 3.797803
iter: 2187 | loss: 3.797502
iter: 2188 | loss: 3.797200
iter: 2189 | loss: 3.796899
iter: 2190 | loss: 3.796597
iter: 2191 | loss: 3.796296
iter: 2192 | loss: 3.795994
iter: 2193 | loss: 3.795693
iter: 2194 | loss: 3.795391
iter: 2195 | loss: 3.795090
iter: 2196 | loss: 3.794788
iter: 2197 | loss: 3.794487
iter: 2198 | loss: 3.794185
iter: 2199 | loss: 3.793884
iter: 2200 | loss: 3.793582
iter: 2201 | loss: 3.793281
iter: 2202 | loss: 3.792979
iter: 2203 | loss: 3.792678
iter: 2204 | loss: 3.792376
iter: 2205 | loss: 3.792075
iter: 2206 | loss: 3.791773
iter: 2207 | loss: 3.791472
iter: 2208 | loss: 3.791170
iter: 2209 | loss: 3.790869
iter: 2210 | loss: 3.790567
iter: 2211 | loss: 3.790266
iter: 2212 | loss: 3.789964
iter: 2213 | loss: 3.789663
iter: 2214 | loss: 3.789361
iter: 2215 | loss: 3.789060
iter: 2216 | loss: 3.788758
iter: 2217 | loss: 3.788457
iter: 2218 | loss: 3.788155
iter: 2219 | loss: 3.787854
iter: 2220 | loss: 3.787552
iter: 2221 | loss: 3.787251
iter: 2222 | loss: 3.786949
iter: 2223 | loss: 3.786648
iter: 2224 | loss: 3.786346
iter: 2225 | loss: 3.786045
iter: 2226 | loss: 3.785743
iter: 2227 | loss: 3.785442
iter: 2228 | loss: 3.785140
iter: 2229 | loss: 3.784838
iter: 2230 | loss: 3.784537
iter: 2231 | loss: 3.784235
iter: 2232 | loss: 3.783934
iter: 2233 | loss: 3.783632
iter: 2234 | loss: 3.783331
iter: 2235 | loss: 3.783029
iter: 2236 | loss: 3.782728
iter: 2237 | loss: 3.782426
iter: 2238 | loss: 3.782125
iter: 2239 | loss: 3.781823
iter: 2240 | loss: 3.781522
iter: 2241 | loss: 3.781220
iter: 2242 | loss: 3.780919
iter: 2243 | loss: 3.780617
iter: 2244 | loss: 3.780316
iter: 2245 | loss: 3.780014
iter: 2246 | loss: 3.779713
iter: 2247 | loss: 3.779411
iter: 2248 | loss: 3.779110
iter: 2249 | loss: 3.778808
iter: 2250 | loss: 3.778507
iter: 2251 | loss: 3.778205
iter: 2252 | loss: 3.777904
iter: 2253 | loss: 3.777602
iter: 2254 | loss: 3.777301
iter: 2255 | loss: 3.776999
iter: 2256 | loss: 3.776698
iter: 2257 | loss: 3.776396
iter: 2258 | loss: 3.776095
iter: 2259 | loss: 3.775793
iter: 2260 | loss: 3.775492
iter: 2261 | loss: 3.775190
iter: 2262 | loss: 3.774889
iter: 2263 | loss: 3.774587
iter: 2264 | loss: 3.774286
iter: 2265 | loss: 3.773984
iter: 2266 | loss: 3.773683
iter: 2267 | loss: 3.773381
iter: 2268 | loss: 3.773080
iter: 2269 | loss: 3.772778
iter: 2270 | loss: 3.772477
iter: 2271 | loss: 3.772175
iter: 2272 | loss: 3.771874
iter: 2273 | loss: 3.771572
iter: 2274 | loss: 3.771271
iter: 2275 | loss: 3.770969
iter: 2276 | loss: 3.770668
iter: 2277 | loss: 3.770366
iter: 2278 | loss: 3.770065
iter: 2279 | loss: 3.769763
iter: 2280 | loss: 3.769461
iter: 2281 | loss: 3.769160
iter: 2282 | loss: 3.768858
iter: 2283 | loss: 3.768557
iter: 2284 | loss: 3.768255
iter: 2285 | loss: 3.767954
iter: 2286 | loss: 3.767652
iter: 2287 | loss: 3.767351
iter: 2288 | loss: 3.767049
iter: 2289 | loss: 3.766748
iter: 2290 | loss: 3.766446
iter: 2291 | loss: 3.766145
iter: 2292 | loss: 3.765843
iter: 2293 | loss: 3.765542
iter: 2294 | loss: 3.765240
iter: 2295 | loss: 3.764939
iter: 2296 | loss: 3.764637
iter: 2297 | loss: 3.764336
iter: 2298 | loss: 3.764034
iter: 2299 | loss: 3.763733
iter: 2300 | loss: 3.763431
iter: 2301 | loss: 3.763130
iter: 2302 | loss: 3.762828
iter: 2303 | loss: 3.762527
iter: 2304 | loss: 3.762225
iter: 2305 | loss: 3.761924
iter: 2306 | loss: 3.761622
iter: 2307 | loss: 3.761321
iter: 2308 | loss: 3.761019
iter: 2309 | loss: 3.760718
iter: 2310 | loss: 3.760416
iter: 2311 | loss: 3.760115
iter: 2312 | loss: 3.759813
iter: 2313 | loss: 3.759512
iter: 2314 | loss: 3.759210
iter: 2315 | loss: 3.758909
iter: 2316 | loss: 3.758607
iter: 2317 | loss: 3.758306
iter: 2318 | loss: 3.758004
iter: 2319 | loss: 3.757703
iter: 2320 | loss: 3.757401
iter: 2321 | loss: 3.757100
iter: 2322 | loss: 3.756798
iter: 2323 | loss: 3.756497
iter: 2324 | loss: 3.756195
iter: 2325 | loss: 3.755894
iter: 2326 | loss: 3.755592
iter: 2327 | loss: 3.755291
iter: 2328 | loss: 3.754989
iter: 2329 | loss: 3.754688
iter: 2330 | loss: 3.754386
iter: 2331 | loss: 3.754085
iter: 2332 | loss: 3.753783
iter: 2333 | loss: 3.753481
iter: 2334 | loss: 3.753180
iter: 2335 | loss: 3.752878
iter: 2336 | loss: 3.752577
iter: 2337 | loss: 3.752275
iter: 2338 | loss: 3.751974
iter: 2339 | loss: 3.751672
iter: 2340 | loss: 3.751371
iter: 2341 | loss: 3.751069
iter: 2342 | loss: 3.750768
iter: 2343 | loss: 3.750466
iter: 2344 | loss: 3.750165
iter: 2345 | loss: 3.749863
iter: 2346 | loss: 3.749562
iter: 2347 | loss: 3.749260
iter: 2348 | loss: 3.748959
iter: 2349 | loss: 3.748657
iter: 2350 | loss: 3.748356
iter: 2351 | loss: 3.748054
iter: 2352 | loss: 3.747753
iter: 2353 | loss: 3.747451
iter: 2354 | loss: 3.747150
iter: 2355 | loss: 3.746848
iter: 2356 | loss: 3.746547
iter: 2357 | loss: 3.746245
iter: 2358 | loss: 3.745944
iter: 2359 | loss: 3.745642
iter: 2360 | loss: 3.745341
iter: 2361 | loss: 3.745039
iter: 2362 | loss: 3.744738
iter: 2363 | loss: 3.744436
iter: 2364 | loss: 3.744135
iter: 2365 | loss: 3.743833
iter: 2366 | loss: 3.743532
iter: 2367 | loss: 3.743230
iter: 2368 | loss: 3.742929
iter: 2369 | loss: 3.742627
iter: 2370 | loss: 3.742326
iter: 2371 | loss: 3.742024
iter: 2372 | loss: 3.741723
iter: 2373 | loss: 3.741421
iter: 2374 | loss: 3.741120
iter: 2375 | loss: 3.740818
iter: 2376 | loss: 3.740517
iter: 2377 | loss: 3.740215
iter: 2378 | loss: 3.739914
iter: 2379 | loss: 3.739612
iter: 2380 | loss: 3.739311
iter: 2381 | loss: 3.739009
iter: 2382 | loss: 3.738708
iter: 2383 | loss: 3.738406
iter: 2384 | loss: 3.738104
iter: 2385 | loss: 3.737803
iter: 2386 | loss: 3.737501
iter: 2387 | loss: 3.737200
iter: 2388 | loss: 3.736898
iter: 2389 | loss: 3.736597
iter: 2390 | loss: 3.736295
iter: 2391 | loss: 3.735994
iter: 2392 | loss: 3.735692
iter: 2393 | loss: 3.735391
iter: 2394 | loss: 3.735089
iter: 2395 | loss: 3.734788
iter: 2396 | loss: 3.734486
iter: 2397 | loss: 3.734185
iter: 2398 | loss: 3.733883
iter: 2399 | loss: 3.733582
iter: 2400 | loss: 3.733280
iter: 2401 | loss: 3.732979
iter: 2402 | loss: 3.732677
iter: 2403 | loss: 3.732376
iter: 2404 | loss: 3.732074
iter: 2405 | loss: 3.731773
iter: 2406 | loss: 3.731471
iter: 2407 | loss: 3.731170
iter: 2408 | loss: 3.730868
iter: 2409 | loss: 3.730567
iter: 2410 | loss: 3.730265
iter: 2411 | loss: 3.729964
iter: 2412 | loss: 3.729662
iter: 2413 | loss: 3.729361
iter: 2414 | loss: 3.729059
iter: 2415 | loss: 3.728758
iter: 2416 | loss: 3.728456
iter: 2417 | loss: 3.728155
iter: 2418 | loss: 3.727853
iter: 2419 | loss: 3.727552
iter: 2420 | loss: 3.727250
iter: 2421 | loss: 3.726949
iter: 2422 | loss: 3.726647
iter: 2423 | loss: 3.726346
iter: 2424 | loss: 3.726044
iter: 2425 | loss: 3.725743
iter: 2426 | loss: 3.725441
iter: 2427 | loss: 3.725140
iter: 2428 | loss: 3.724838
iter: 2429 | loss: 3.724537
iter: 2430 | loss: 3.724235
iter: 2431 | loss: 3.723934
iter: 2432 | loss: 3.723632
iter: 2433 | loss: 3.723331
iter: 2434 | loss: 3.723029
iter: 2435 | loss: 3.722728
iter: 2436 | loss: 3.722426
iter: 2437 | loss: 3.722124
iter: 2438 | loss: 3.721823
iter: 2439 | loss: 3.721521
iter: 2440 | loss: 3.721220
iter: 2441 | loss: 3.720918
iter: 2442 | loss: 3.720617
iter: 2443 | loss: 3.720315
iter: 2444 | loss: 3.720014
iter: 2445 | loss: 3.719712
iter: 2446 | loss: 3.719411
iter: 2447 | loss: 3.719109
iter: 2448 | loss: 3.718808
iter: 2449 | loss: 3.718506
iter: 2450 | loss: 3.718205
iter: 2451 | loss: 3.717903
iter: 2452 | loss: 3.717602
iter: 2453 | loss: 3.717300
iter: 2454 | loss: 3.716999
iter: 2455 | loss: 3.716697
iter: 2456 | loss: 3.716396
iter: 2457 | loss: 3.716094
iter: 2458 | loss: 3.715793
iter: 2459 | loss: 3.715491
iter: 2460 | loss: 3.715190
iter: 2461 | loss: 3.714888
iter: 2462 | loss: 3.714587
iter: 2463 | loss: 3.714285
iter: 2464 | loss: 3.713984
iter: 2465 | loss: 3.713682
iter: 2466 | loss: 3.713381
iter: 2467 | loss: 3.713079
iter: 2468 | loss: 3.712778
iter: 2469 | loss: 3.712476
iter: 2470 | loss: 3.712175
iter: 2471 | loss: 3.711873
iter: 2472 | loss: 3.711572
iter: 2473 | loss: 3.711270
iter: 2474 | loss: 3.710969
iter: 2475 | loss: 3.710667
iter: 2476 | loss: 3.710366
iter: 2477 | loss: 3.710064
iter: 2478 | loss: 3.709763
iter: 2479 | loss: 3.709461
iter: 2480 | loss: 3.709160
iter: 2481 | loss: 3.708858
iter: 2482 | loss: 3.708557
iter: 2483 | loss: 3.708255
iter: 2484 | loss: 3.707954
iter: 2485 | loss: 3.707652
iter: 2486 | loss: 3.707351
iter: 2487 | loss: 3.707049
iter: 2488 | loss: 3.706747
iter: 2489 | loss: 3.706446
iter: 2490 | loss: 3.706144
iter: 2491 | loss: 3.705843
iter: 2492 | loss: 3.705541
iter: 2493 | loss: 3.705240
iter: 2494 | loss: 3.704938
iter: 2495 | loss: 3.704637
iter: 2496 | loss: 3.704335
iter: 2497 | loss: 3.704034
iter: 2498 | loss: 3.703732
iter: 2499 | loss: 3.703431
iter: 2500 | loss: 3.703129
iter: 2501 | loss: 3.702828
iter: 2502 | loss: 3.702526
iter: 2503 | loss: 3.702225
iter: 2504 | loss: 3.701923
iter: 2505 | loss: 3.701622
iter: 2506 | loss: 3.701320
iter: 2507 | loss: 3.701019
iter: 2508 | loss: 3.700717
iter: 2509 | loss: 3.700416
iter: 2510 | loss: 3.700114
iter: 2511 | loss: 3.699813
iter: 2512 | loss: 3.699511
iter: 2513 | loss: 3.699210
iter: 2514 | loss: 3.698908
iter: 2515 | loss: 3.698607
iter: 2516 | loss: 3.698305
iter: 2517 | loss: 3.698004
iter: 2518 | loss: 3.697702
iter: 2519 | loss: 3.697401
iter: 2520 | loss: 3.697099
iter: 2521 | loss: 3.696798
iter: 2522 | loss: 3.696496
iter: 2523 | loss: 3.696195
iter: 2524 | loss: 3.695893
iter: 2525 | loss: 3.695592
iter: 2526 | loss: 3.695290
iter: 2527 | loss: 3.694989
iter: 2528 | loss: 3.694687
iter: 2529 | loss: 3.694386
iter: 2530 | loss: 3.694084
iter: 2531 | loss: 3.693783
iter: 2532 | loss: 3.693481
iter: 2533 | loss: 3.693180
iter: 2534 | loss: 3.692878
iter: 2535 | loss: 3.692577
iter: 2536 | loss: 3.692275
iter: 2537 | loss: 3.691974
iter: 2538 | loss: 3.691672
iter: 2539 | loss: 3.691371
iter: 2540 | loss: 3.691069
iter: 2541 | loss: 3.690767
iter: 2542 | loss: 3.690466
iter: 2543 | loss: 3.690164
iter: 2544 | loss: 3.689863
iter: 2545 | loss: 3.689561
iter: 2546 | loss: 3.689260
iter: 2547 | loss: 3.688958
iter: 2548 | loss: 3.688657
iter: 2549 | loss: 3.688355
iter: 2550 | loss: 3.688054
iter: 2551 | loss: 3.687752
iter: 2552 | loss: 3.687451
iter: 2553 | loss: 3.687149
iter: 2554 | loss: 3.686848
iter: 2555 | loss: 3.686546
iter: 2556 | loss: 3.686245
iter: 2557 | loss: 3.685943
iter: 2558 | loss: 3.685642
iter: 2559 | loss: 3.685340
iter: 2560 | loss: 3.685039
iter: 2561 | loss: 3.684737
iter: 2562 | loss: 3.684436
iter: 2563 | loss: 3.684134
iter: 2564 | loss: 3.683833
iter: 2565 | loss: 3.683531
iter: 2566 | loss: 3.683230
iter: 2567 | loss: 3.682928
iter: 2568 | loss: 3.682627
iter: 2569 | loss: 3.682325
iter: 2570 | loss: 3.682024
iter: 2571 | loss: 3.681722
iter: 2572 | loss: 3.681421
iter: 2573 | loss: 3.681119
iter: 2574 | loss: 3.680818
iter: 2575 | loss: 3.680516
iter: 2576 | loss: 3.680215
iter: 2577 | loss: 3.679913
iter: 2578 | loss: 3.679612
iter: 2579 | loss: 3.679310
iter: 2580 | loss: 3.679009
iter: 2581 | loss: 3.678707
iter: 2582 | loss: 3.678406
iter: 2583 | loss: 3.678104
iter: 2584 | loss: 3.677803
iter: 2585 | loss: 3.677501
iter: 2586 | loss: 3.677200
iter: 2587 | loss: 3.676898
iter: 2588 | loss: 3.676597
iter: 2589 | loss: 3.676295
iter: 2590 | loss: 3.675994
iter: 2591 | loss: 3.675692
iter: 2592 | loss: 3.675391
iter: 2593 | loss: 3.675089
iter: 2594 | loss: 3.674787
iter: 2595 | loss: 3.674486
iter: 2596 | loss: 3.674184
iter: 2597 | loss: 3.673883
iter: 2598 | loss: 3.673581
iter: 2599 | loss: 3.673280
iter: 2600 | loss: 3.672978
iter: 2601 | loss: 3.672677
iter: 2602 | loss: 3.672375
iter: 2603 | loss: 3.672074
iter: 2604 | loss: 3.671772
iter: 2605 | loss: 3.671471
iter: 2606 | loss: 3.671169
iter: 2607 | loss: 3.670868
iter: 2608 | loss: 3.670566
iter: 2609 | loss: 3.670265
iter: 2610 | loss: 3.669963
iter: 2611 | loss: 3.669662
iter: 2612 | loss: 3.669360
iter: 2613 | loss: 3.669059
iter: 2614 | loss: 3.668757
iter: 2615 | loss: 3.668456
iter: 2616 | loss: 3.668154
iter: 2617 | loss: 3.667853
iter: 2618 | loss: 3.667551
iter: 2619 | loss: 3.667250
iter: 2620 | loss: 3.666948
iter: 2621 | loss: 3.666647
iter: 2622 | loss: 3.666345
iter: 2623 | loss: 3.666044
iter: 2624 | loss: 3.665742
iter: 2625 | loss: 3.665441
iter: 2626 | loss: 3.665139
iter: 2627 | loss: 3.664838
iter: 2628 | loss: 3.664536
iter: 2629 | loss: 3.664235
iter: 2630 | loss: 3.663933
iter: 2631 | loss: 3.663632
iter: 2632 | loss: 3.663330
iter: 2633 | loss: 3.663029
iter: 2634 | loss: 3.662727
iter: 2635 | loss: 3.662426
iter: 2636 | loss: 3.662124
iter: 2637 | loss: 3.661823
iter: 2638 | loss: 3.661521
iter: 2639 | loss: 3.661220
iter: 2640 | loss: 3.660918
iter: 2641 | loss: 3.660617
iter: 2642 | loss: 3.660315
iter: 2643 | loss: 3.660014
iter: 2644 | loss: 3.659712
iter: 2645 | loss: 3.659410
iter: 2646 | loss: 3.659109
iter: 2647 | loss: 3.658807
iter: 2648 | loss: 3.658506
iter: 2649 | loss: 3.658204
iter: 2650 | loss: 3.657903
iter: 2651 | loss: 3.657601
iter: 2652 | loss: 3.657300
iter: 2653 | loss: 3.656998
iter: 2654 | loss: 3.656697
iter: 2655 | loss: 3.656395
iter: 2656 | loss: 3.656094
iter: 2657 | loss: 3.655792
iter: 2658 | loss: 3.655491
iter: 2659 | loss: 3.655189
iter: 2660 | loss: 3.654888
iter: 2661 | loss: 3.654586
iter: 2662 | loss: 3.654285
iter: 2663 | loss: 3.653983
iter: 2664 | loss: 3.653682
iter: 2665 | loss: 3.653380
iter: 2666 | loss: 3.653079
iter: 2667 | loss: 3.652777
iter: 2668 | loss: 3.652476
iter: 2669 | loss: 3.652174
iter: 2670 | loss: 3.651873
iter: 2671 | loss: 3.651571
iter: 2672 | loss: 3.651270
iter: 2673 | loss: 3.650968
iter: 2674 | loss: 3.650667
iter: 2675 | loss: 3.650365
iter: 2676 | loss: 3.650064
iter: 2677 | loss: 3.649762
iter: 2678 | loss: 3.649461
iter: 2679 | loss: 3.649159
iter: 2680 | loss: 3.648858
iter: 2681 | loss: 3.648556
iter: 2682 | loss: 3.648255
iter: 2683 | loss: 3.647953
iter: 2684 | loss: 3.647652
iter: 2685 | loss: 3.647350
iter: 2686 | loss: 3.647049
iter: 2687 | loss: 3.646747
iter: 2688 | loss: 3.646446
iter: 2689 | loss: 3.646144
iter: 2690 | loss: 3.645843
iter: 2691 | loss: 3.645541
iter: 2692 | loss: 3.645240
iter: 2693 | loss: 3.644938
iter: 2694 | loss: 3.644637
iter: 2695 | loss: 3.644335
iter: 2696 | loss: 3.644034
iter: 2697 | loss: 3.643732
iter: 2698 | loss: 3.643430
iter: 2699 | loss: 3.643129
iter: 2700 | loss: 3.642827
iter: 2701 | loss: 3.642526
iter: 2702 | loss: 3.642224
iter: 2703 | loss: 3.641923
iter: 2704 | loss: 3.641621
iter: 2705 | loss: 3.641320
iter: 2706 | loss: 3.641018
iter: 2707 | loss: 3.640717
iter: 2708 | loss: 3.640415
iter: 2709 | loss: 3.640114
iter: 2710 | loss: 3.639812
iter: 2711 | loss: 3.639511
iter: 2712 | loss: 3.639209
iter: 2713 | loss: 3.638908
iter: 2714 | loss: 3.638606
iter: 2715 | loss: 3.638305
iter: 2716 | loss: 3.638003
iter: 2717 | loss: 3.637702
iter: 2718 | loss: 3.637400
iter: 2719 | loss: 3.637099
iter: 2720 | loss: 3.636797
iter: 2721 | loss: 3.636496
iter: 2722 | loss: 3.636194
iter: 2723 | loss: 3.635893
iter: 2724 | loss: 3.635591
iter: 2725 | loss: 3.635290
iter: 2726 | loss: 3.634988
iter: 2727 | loss: 3.634687
iter: 2728 | loss: 3.634385
iter: 2729 | loss: 3.634084
iter: 2730 | loss: 3.633782
iter: 2731 | loss: 3.633481
iter: 2732 | loss: 3.633179
iter: 2733 | loss: 3.632878
iter: 2734 | loss: 3.632576
iter: 2735 | loss: 3.632275
iter: 2736 | loss: 3.631973
iter: 2737 | loss: 3.631672
iter: 2738 | loss: 3.631370
iter: 2739 | loss: 3.631069
iter: 2740 | loss: 3.630767
iter: 2741 | loss: 3.630466
iter: 2742 | loss: 3.630164
iter: 2743 | loss: 3.629863
iter: 2744 | loss: 3.629561
iter: 2745 | loss: 3.629260
iter: 2746 | loss: 3.628958
iter: 2747 | loss: 3.628657
iter: 2748 | loss: 3.628355
iter: 2749 | loss: 3.628053
iter: 2750 | loss: 3.627752
iter: 2751 | loss: 3.627450
iter: 2752 | loss: 3.627149
iter: 2753 | loss: 3.626847
iter: 2754 | loss: 3.626546
iter: 2755 | loss: 3.626244
iter: 2756 | loss: 3.625943
iter: 2757 | loss: 3.625641
iter: 2758 | loss: 3.625340
iter: 2759 | loss: 3.625038
iter: 2760 | loss: 3.624737
iter: 2761 | loss: 3.624435
iter: 2762 | loss: 3.624134
iter: 2763 | loss: 3.623832
iter: 2764 | loss: 3.623531
iter: 2765 | loss: 3.623229
iter: 2766 | loss: 3.622928
iter: 2767 | loss: 3.622626
iter: 2768 | loss: 3.622325
iter: 2769 | loss: 3.622023
iter: 2770 | loss: 3.621722
iter: 2771 | loss: 3.621420
iter: 2772 | loss: 3.621119
iter: 2773 | loss: 3.620817
iter: 2774 | loss: 3.620516
iter: 2775 | loss: 3.620214
iter: 2776 | loss: 3.619913
iter: 2777 | loss: 3.619611
iter: 2778 | loss: 3.619310
iter: 2779 | loss: 3.619008
iter: 2780 | loss: 3.618707
iter: 2781 | loss: 3.618405
iter: 2782 | loss: 3.618104
iter: 2783 | loss: 3.617802
iter: 2784 | loss: 3.617501
iter: 2785 | loss: 3.617199
iter: 2786 | loss: 3.616898
iter: 2787 | loss: 3.616596
iter: 2788 | loss: 3.616295
iter: 2789 | loss: 3.615993
iter: 2790 | loss: 3.615692
iter: 2791 | loss: 3.615390
iter: 2792 | loss: 3.615089
iter: 2793 | loss: 3.614787
iter: 2794 | loss: 3.614486
iter: 2795 | loss: 3.614184
iter: 2796 | loss: 3.613883
iter: 2797 | loss: 3.613581
iter: 2798 | loss: 3.613280
iter: 2799 | loss: 3.612978
iter: 2800 | loss: 3.612677
iter: 2801 | loss: 3.612375
iter: 2802 | loss: 3.612073
iter: 2803 | loss: 3.611772
iter: 2804 | loss: 3.611470
iter: 2805 | loss: 3.611169
iter: 2806 | loss: 3.610867
iter: 2807 | loss: 3.610566
iter: 2808 | loss: 3.610264
iter: 2809 | loss: 3.609963
iter: 2810 | loss: 3.609661
iter: 2811 | loss: 3.609360
iter: 2812 | loss: 3.609058
iter: 2813 | loss: 3.608757
iter: 2814 | loss: 3.608455
iter: 2815 | loss: 3.608154
iter: 2816 | loss: 3.607852
iter: 2817 | loss: 3.607551
iter: 2818 | loss: 3.607249
iter: 2819 | loss: 3.606948
iter: 2820 | loss: 3.606646
iter: 2821 | loss: 3.606345
iter: 2822 | loss: 3.606043
iter: 2823 | loss: 3.605742
iter: 2824 | loss: 3.605440
iter: 2825 | loss: 3.605139
iter: 2826 | loss: 3.604837
iter: 2827 | loss: 3.604536
iter: 2828 | loss: 3.604234
iter: 2829 | loss: 3.603933
iter: 2830 | loss: 3.603631
iter: 2831 | loss: 3.603330
iter: 2832 | loss: 3.603028
iter: 2833 | loss: 3.602727
iter: 2834 | loss: 3.602425
iter: 2835 | loss: 3.602124
iter: 2836 | loss: 3.601822
iter: 2837 | loss: 3.601521
iter: 2838 | loss: 3.601219
iter: 2839 | loss: 3.600918
iter: 2840 | loss: 3.600616
iter: 2841 | loss: 3.600315
iter: 2842 | loss: 3.600013
iter: 2843 | loss: 3.599712
iter: 2844 | loss: 3.599410
iter: 2845 | loss: 3.599109
iter: 2846 | loss: 3.598807
iter: 2847 | loss: 3.598506
iter: 2848 | loss: 3.598204
iter: 2849 | loss: 3.597903
iter: 2850 | loss: 3.597601
iter: 2851 | loss: 3.597300
iter: 2852 | loss: 3.596998
iter: 2853 | loss: 3.596696
iter: 2854 | loss: 3.596395
iter: 2855 | loss: 3.596093
iter: 2856 | loss: 3.595792
iter: 2857 | loss: 3.595490
iter: 2858 | loss: 3.595189
iter: 2859 | loss: 3.594887
iter: 2860 | loss: 3.594586
iter: 2861 | loss: 3.594284
iter: 2862 | loss: 3.593983
iter: 2863 | loss: 3.593681
iter: 2864 | loss: 3.593380
iter: 2865 | loss: 3.593078
iter: 2866 | loss: 3.592777
iter: 2867 | loss: 3.592475
iter: 2868 | loss: 3.592174
iter: 2869 | loss: 3.591872
iter: 2870 | loss: 3.591571
iter: 2871 | loss: 3.591269
iter: 2872 | loss: 3.590968
iter: 2873 | loss: 3.590666
iter: 2874 | loss: 3.590365
iter: 2875 | loss: 3.590063
iter: 2876 | loss: 3.589762
iter: 2877 | loss: 3.589460
iter: 2878 | loss: 3.589159
iter: 2879 | loss: 3.588857
iter: 2880 | loss: 3.588556
iter: 2881 | loss: 3.588254
iter: 2882 | loss: 3.587953
iter: 2883 | loss: 3.587651
iter: 2884 | loss: 3.587350
iter: 2885 | loss: 3.587048
iter: 2886 | loss: 3.586747
iter: 2887 | loss: 3.586445
iter: 2888 | loss: 3.586144
iter: 2889 | loss: 3.585842
iter: 2890 | loss: 3.585541
iter: 2891 | loss: 3.585239
iter: 2892 | loss: 3.584938
iter: 2893 | loss: 3.584636
iter: 2894 | loss: 3.584335
iter: 2895 | loss: 3.584033
iter: 2896 | loss: 3.583732
iter: 2897 | loss: 3.583430
iter: 2898 | loss: 3.583129
iter: 2899 | loss: 3.582827
iter: 2900 | loss: 3.582526
iter: 2901 | loss: 3.582224
iter: 2902 | loss: 3.581923
iter: 2903 | loss: 3.581621
iter: 2904 | loss: 3.581320
iter: 2905 | loss: 3.581018
iter: 2906 | loss: 3.580716
iter: 2907 | loss: 3.580415
iter: 2908 | loss: 3.580113
iter: 2909 | loss: 3.579812
iter: 2910 | loss: 3.579510
iter: 2911 | loss: 3.579209
iter: 2912 | loss: 3.578907
iter: 2913 | loss: 3.578606
iter: 2914 | loss: 3.578304
iter: 2915 | loss: 3.578003
iter: 2916 | loss: 3.577701
iter: 2917 | loss: 3.577400
iter: 2918 | loss: 3.577098
iter: 2919 | loss: 3.576797
iter: 2920 | loss: 3.576495
iter: 2921 | loss: 3.576194
iter: 2922 | loss: 3.575892
iter: 2923 | loss: 3.575591
iter: 2924 | loss: 3.575289
iter: 2925 | loss: 3.574988
iter: 2926 | loss: 3.574686
iter: 2927 | loss: 3.574385
iter: 2928 | loss: 3.574083
iter: 2929 | loss: 3.573782
iter: 2930 | loss: 3.573480
iter: 2931 | loss: 3.573179
iter: 2932 | loss: 3.572877
iter: 2933 | loss: 3.572576
iter: 2934 | loss: 3.572274
iter: 2935 | loss: 3.571973
iter: 2936 | loss: 3.571671
iter: 2937 | loss: 3.571370
iter: 2938 | loss: 3.571068
iter: 2939 | loss: 3.570767
iter: 2940 | loss: 3.570465
iter: 2941 | loss: 3.570164
iter: 2942 | loss: 3.569862
iter: 2943 | loss: 3.569561
iter: 2944 | loss: 3.569259
iter: 2945 | loss: 3.568958
iter: 2946 | loss: 3.568656
iter: 2947 | loss: 3.568355
iter: 2948 | loss: 3.568053
iter: 2949 | loss: 3.567752
iter: 2950 | loss: 3.567450
iter: 2951 | loss: 3.567149
iter: 2952 | loss: 3.566847
iter: 2953 | loss: 3.566546
iter: 2954 | loss: 3.566244
iter: 2955 | loss: 3.565943
iter: 2956 | loss: 3.565641
iter: 2957 | loss: 3.565340
iter: 2958 | loss: 3.565038
iter: 2959 | loss: 3.564736
iter: 2960 | loss: 3.564435
iter: 2961 | loss: 3.564133
iter: 2962 | loss: 3.563832
iter: 2963 | loss: 3.563530
iter: 2964 | loss: 3.563229
iter: 2965 | loss: 3.562927
iter: 2966 | loss: 3.562626
iter: 2967 | loss: 3.562324
iter: 2968 | loss: 3.562023
iter: 2969 | loss: 3.561721
iter: 2970 | loss: 3.561420
iter: 2971 | loss: 3.561118
iter: 2972 | loss: 3.560817
iter: 2973 | loss: 3.560515
iter: 2974 | loss: 3.560214
iter: 2975 | loss: 3.559912
iter: 2976 | loss: 3.559611
iter: 2977 | loss: 3.559309
iter: 2978 | loss: 3.559008
iter: 2979 | loss: 3.558706
iter: 2980 | loss: 3.558405
iter: 2981 | loss: 3.558103
iter: 2982 | loss: 3.557802
iter: 2983 | loss: 3.557500
iter: 2984 | loss: 3.557199
iter: 2985 | loss: 3.556897
iter: 2986 | loss: 3.556596
iter: 2987 | loss: 3.556294
iter: 2988 | loss: 3.555993
iter: 2989 | loss: 3.555691
iter: 2990 | loss: 3.555390
iter: 2991 | loss: 3.555088
iter: 2992 | loss: 3.554787
iter: 2993 | loss: 3.554485
iter: 2994 | loss: 3.554184
iter: 2995 | loss: 3.553882
iter: 2996 | loss: 3.553581
iter: 2997 | loss: 3.553279
iter: 2998 | loss: 3.552978
iter: 2999 | loss: 3.552676
iter: 3000 | loss: 3.552375
iter: 3001 | loss: 3.552073
iter: 3002 | loss: 3.551772
iter: 3003 | loss: 3.551470
iter: 3004 | loss: 3.551169
iter: 3005 | loss: 3.550867
iter: 3006 | loss: 3.550566
iter: 3007 | loss: 3.550264
iter: 3008 | loss: 3.549963
iter: 3009 | loss: 3.549661
iter: 3010 | loss: 3.549359
iter: 3011 | loss: 3.549058
iter: 3012 | loss: 3.548756
iter: 3013 | loss: 3.548455
iter: 3014 | loss: 3.548153
iter: 3015 | loss: 3.547852
iter: 3016 | loss: 3.547550
iter: 3017 | loss: 3.547249
iter: 3018 | loss: 3.546947
iter: 3019 | loss: 3.546646
iter: 3020 | loss: 3.546344
iter: 3021 | loss: 3.546043
iter: 3022 | loss: 3.545741
iter: 3023 | loss: 3.545440
iter: 3024 | loss: 3.545138
iter: 3025 | loss: 3.544837
iter: 3026 | loss: 3.544535
iter: 3027 | loss: 3.544234
iter: 3028 | loss: 3.543932
iter: 3029 | loss: 3.543631
iter: 3030 | loss: 3.543329
iter: 3031 | loss: 3.543028
iter: 3032 | loss: 3.542726
iter: 3033 | loss: 3.542425
iter: 3034 | loss: 3.542123
iter: 3035 | loss: 3.541822
iter: 3036 | loss: 3.541520
iter: 3037 | loss: 3.541219
iter: 3038 | loss: 3.540917
iter: 3039 | loss: 3.540616
iter: 3040 | loss: 3.540314
iter: 3041 | loss: 3.540013
iter: 3042 | loss: 3.539711
iter: 3043 | loss: 3.539410
iter: 3044 | loss: 3.539108
iter: 3045 | loss: 3.538807
iter: 3046 | loss: 3.538505
iter: 3047 | loss: 3.538204
iter: 3048 | loss: 3.537902
iter: 3049 | loss: 3.537601
iter: 3050 | loss: 3.537299
iter: 3051 | loss: 3.536998
iter: 3052 | loss: 3.536696
iter: 3053 | loss: 3.536395
iter: 3054 | loss: 3.536093
iter: 3055 | loss: 3.535792
iter: 3056 | loss: 3.535490
iter: 3057 | loss: 3.535189
iter: 3058 | loss: 3.534887
iter: 3059 | loss: 3.534586
iter: 3060 | loss: 3.534284
iter: 3061 | loss: 3.533983
iter: 3062 | loss: 3.533681
iter: 3063 | loss: 3.533379
iter: 3064 | loss: 3.533078
iter: 3065 | loss: 3.532776
iter: 3066 | loss: 3.532475
iter: 3067 | loss: 3.532173
iter: 3068 | loss: 3.531872
iter: 3069 | loss: 3.531570
iter: 3070 | loss: 3.531269
iter: 3071 | loss: 3.530967
iter: 3072 | loss: 3.530666
iter: 3073 | loss: 3.530364
iter: 3074 | loss: 3.530063
iter: 3075 | loss: 3.529761
iter: 3076 | loss: 3.529460
iter: 3077 | loss: 3.529158
iter: 3078 | loss: 3.528857
iter: 3079 | loss: 3.528555
iter: 3080 | loss: 3.528254
iter: 3081 | loss: 3.527952
iter: 3082 | loss: 3.527651
iter: 3083 | loss: 3.527349
iter: 3084 | loss: 3.527048
iter: 3085 | loss: 3.526746
iter: 3086 | loss: 3.526445
iter: 3087 | loss: 3.526143
iter: 3088 | loss: 3.525842
iter: 3089 | loss: 3.525540
iter: 3090 | loss: 3.525239
iter: 3091 | loss: 3.524937
iter: 3092 | loss: 3.524636
iter: 3093 | loss: 3.524334
iter: 3094 | loss: 3.524033
iter: 3095 | loss: 3.523731
iter: 3096 | loss: 3.523430
iter: 3097 | loss: 3.523128
iter: 3098 | loss: 3.522827
iter: 3099 | loss: 3.522525
iter: 3100 | loss: 3.522224
iter: 3101 | loss: 3.521922
iter: 3102 | loss: 3.521621
iter: 3103 | loss: 3.521319
iter: 3104 | loss: 3.521018
iter: 3105 | loss: 3.520716
iter: 3106 | loss: 3.520415
iter: 3107 | loss: 3.520113
iter: 3108 | loss: 3.519812
iter: 3109 | loss: 3.519510
iter: 3110 | loss: 3.519209
iter: 3111 | loss: 3.518907
iter: 3112 | loss: 3.518606
iter: 3113 | loss: 3.518304
iter: 3114 | loss: 3.518002
iter: 3115 | loss: 3.517701
iter: 3116 | loss: 3.517399
iter: 3117 | loss: 3.517098
iter: 3118 | loss: 3.516796
iter: 3119 | loss: 3.516495
iter: 3120 | loss: 3.516193
iter: 3121 | loss: 3.515892
iter: 3122 | loss: 3.515590
iter: 3123 | loss: 3.515289
iter: 3124 | loss: 3.514987
iter: 3125 | loss: 3.514686
iter: 3126 | loss: 3.514384
iter: 3127 | loss: 3.514083
iter: 3128 | loss: 3.513781
iter: 3129 | loss: 3.513480
iter: 3130 | loss: 3.513178
iter: 3131 | loss: 3.512877
iter: 3132 | loss: 3.512575
iter: 3133 | loss: 3.512274
iter: 3134 | loss: 3.511972
iter: 3135 | loss: 3.511671
iter: 3136 | loss: 3.511369
iter: 3137 | loss: 3.511068
iter: 3138 | loss: 3.510766
iter: 3139 | loss: 3.510465
iter: 3140 | loss: 3.510163
iter: 3141 | loss: 3.509862
iter: 3142 | loss: 3.509560
iter: 3143 | loss: 3.509259
iter: 3144 | loss: 3.508957
iter: 3145 | loss: 3.508656
iter: 3146 | loss: 3.508354
iter: 3147 | loss: 3.508053
iter: 3148 | loss: 3.507751
iter: 3149 | loss: 3.507450
iter: 3150 | loss: 3.507148
iter: 3151 | loss: 3.506847
iter: 3152 | loss: 3.506545
iter: 3153 | loss: 3.506244
iter: 3154 | loss: 3.505942
iter: 3155 | loss: 3.505641
iter: 3156 | loss: 3.505339
iter: 3157 | loss: 3.505038
iter: 3158 | loss: 3.504736
iter: 3159 | loss: 3.504435
iter: 3160 | loss: 3.504133
iter: 3161 | loss: 3.503832
iter: 3162 | loss: 3.503530
iter: 3163 | loss: 3.503229
iter: 3164 | loss: 3.502927
iter: 3165 | loss: 3.502626
iter: 3166 | loss: 3.502324
iter: 3167 | loss: 3.502022
iter: 3168 | loss: 3.501721
iter: 3169 | loss: 3.501419
iter: 3170 | loss: 3.501118
iter: 3171 | loss: 3.500816
iter: 3172 | loss: 3.500515
iter: 3173 | loss: 3.500213
iter: 3174 | loss: 3.499912
iter: 3175 | loss: 3.499610
iter: 3176 | loss: 3.499309
iter: 3177 | loss: 3.499007
iter: 3178 | loss: 3.498706
iter: 3179 | loss: 3.498404
iter: 3180 | loss: 3.498103
iter: 3181 | loss: 3.497801
iter: 3182 | loss: 3.497500
iter: 3183 | loss: 3.497198
iter: 3184 | loss: 3.496897
iter: 3185 | loss: 3.496595
iter: 3186 | loss: 3.496294
iter: 3187 | loss: 3.495992
iter: 3188 | loss: 3.495691
iter: 3189 | loss: 3.495389
iter: 3190 | loss: 3.495088
iter: 3191 | loss: 3.494786
iter: 3192 | loss: 3.494485
iter: 3193 | loss: 3.494183
iter: 3194 | loss: 3.493882
iter: 3195 | loss: 3.493580
iter: 3196 | loss: 3.493279
iter: 3197 | loss: 3.492977
iter: 3198 | loss: 3.492676
iter: 3199 | loss: 3.492374
iter: 3200 | loss: 3.492073
iter: 3201 | loss: 3.491771
iter: 3202 | loss: 3.491470
iter: 3203 | loss: 3.491168
iter: 3204 | loss: 3.490867
iter: 3205 | loss: 3.490565
iter: 3206 | loss: 3.490264
iter: 3207 | loss: 3.489962
iter: 3208 | loss: 3.489661
iter: 3209 | loss: 3.489359
iter: 3210 | loss: 3.489058
iter: 3211 | loss: 3.488756
iter: 3212 | loss: 3.488455
iter: 3213 | loss: 3.488153
iter: 3214 | loss: 3.487852
iter: 3215 | loss: 3.487550
iter: 3216 | loss: 3.487249
iter: 3217 | loss: 3.486947
iter: 3218 | loss: 3.486645
iter: 3219 | loss: 3.486344
iter: 3220 | loss: 3.486042
iter: 3221 | loss: 3.485741
iter: 3222 | loss: 3.485439
iter: 3223 | loss: 3.485138
iter: 3224 | loss: 3.484836
iter: 3225 | loss: 3.484535
iter: 3226 | loss: 3.484233
iter: 3227 | loss: 3.483932
iter: 3228 | loss: 3.483630
iter: 3229 | loss: 3.483329
iter: 3230 | loss: 3.483027
iter: 3231 | loss: 3.482726
iter: 3232 | loss: 3.482424
iter: 3233 | loss: 3.482123
iter: 3234 | loss: 3.481821
iter: 3235 | loss: 3.481520
iter: 3236 | loss: 3.481218
iter: 3237 | loss: 3.480917
iter: 3238 | loss: 3.480615
iter: 3239 | loss: 3.480314
iter: 3240 | loss: 3.480012
iter: 3241 | loss: 3.479711
iter: 3242 | loss: 3.479409
iter: 3243 | loss: 3.479108
iter: 3244 | loss: 3.478806
iter: 3245 | loss: 3.478505
iter: 3246 | loss: 3.478203
iter: 3247 | loss: 3.477902
iter: 3248 | loss: 3.477600
iter: 3249 | loss: 3.477299
iter: 3250 | loss: 3.476997
iter: 3251 | loss: 3.476696
iter: 3252 | loss: 3.476394
iter: 3253 | loss: 3.476093
iter: 3254 | loss: 3.475791
iter: 3255 | loss: 3.475490
iter: 3256 | loss: 3.475188
iter: 3257 | loss: 3.474887
iter: 3258 | loss: 3.474585
iter: 3259 | loss: 3.474284
iter: 3260 | loss: 3.473982
iter: 3261 | loss: 3.473681
iter: 3262 | loss: 3.473379
iter: 3263 | loss: 3.473078
iter: 3264 | loss: 3.472776
iter: 3265 | loss: 3.472475
iter: 3266 | loss: 3.472173
iter: 3267 | loss: 3.471872
iter: 3268 | loss: 3.471570
iter: 3269 | loss: 3.471269
iter: 3270 | loss: 3.470967
iter: 3271 | loss: 3.470665
iter: 3272 | loss: 3.470364
iter: 3273 | loss: 3.470062
iter: 3274 | loss: 3.469761
iter: 3275 | loss: 3.469459
iter: 3276 | loss: 3.469158
iter: 3277 | loss: 3.468856
iter: 3278 | loss: 3.468555
iter: 3279 | loss: 3.468253
iter: 3280 | loss: 3.467952
iter: 3281 | loss: 3.467650
iter: 3282 | loss: 3.467349
iter: 3283 | loss: 3.467047
iter: 3284 | loss: 3.466746
iter: 3285 | loss: 3.466444
iter: 3286 | loss: 3.466143
iter: 3287 | loss: 3.465841
iter: 3288 | loss: 3.465540
iter: 3289 | loss: 3.465238
iter: 3290 | loss: 3.464937
iter: 3291 | loss: 3.464635
iter: 3292 | loss: 3.464334
iter: 3293 | loss: 3.464032
iter: 3294 | loss: 3.463731
iter: 3295 | loss: 3.463429
iter: 3296 | loss: 3.463128
iter: 3297 | loss: 3.462826
iter: 3298 | loss: 3.462525
iter: 3299 | loss: 3.462223
iter: 3300 | loss: 3.461922
iter: 3301 | loss: 3.461620
iter: 3302 | loss: 3.461319
iter: 3303 | loss: 3.461017
iter: 3304 | loss: 3.460716
iter: 3305 | loss: 3.460414
iter: 3306 | loss: 3.460113
iter: 3307 | loss: 3.459811
iter: 3308 | loss: 3.459510
iter: 3309 | loss: 3.459208
iter: 3310 | loss: 3.458907
iter: 3311 | loss: 3.458605
iter: 3312 | loss: 3.458304
iter: 3313 | loss: 3.458002
iter: 3314 | loss: 3.457701
iter: 3315 | loss: 3.457399
iter: 3316 | loss: 3.457098
iter: 3317 | loss: 3.456796
iter: 3318 | loss: 3.456495
iter: 3319 | loss: 3.456193
iter: 3320 | loss: 3.455892
iter: 3321 | loss: 3.455590
iter: 3322 | loss: 3.455289
iter: 3323 | loss: 3.454987
iter: 3324 | loss: 3.454685
iter: 3325 | loss: 3.454384
iter: 3326 | loss: 3.454082
iter: 3327 | loss: 3.453781
iter: 3328 | loss: 3.453479
iter: 3329 | loss: 3.453178
iter: 3330 | loss: 3.452876
iter: 3331 | loss: 3.452575
iter: 3332 | loss: 3.452273
iter: 3333 | loss: 3.451972
iter: 3334 | loss: 3.451670
iter: 3335 | loss: 3.451369
iter: 3336 | loss: 3.451067
iter: 3337 | loss: 3.450766
iter: 3338 | loss: 3.450464
iter: 3339 | loss: 3.450163
iter: 3340 | loss: 3.449861
iter: 3341 | loss: 3.449560
iter: 3342 | loss: 3.449258
iter: 3343 | loss: 3.448957
iter: 3344 | loss: 3.448655
iter: 3345 | loss: 3.448354
iter: 3346 | loss: 3.448052
iter: 3347 | loss: 3.447751
iter: 3348 | loss: 3.447449
iter: 3349 | loss: 3.447148
iter: 3350 | loss: 3.446846
iter: 3351 | loss: 3.446545
iter: 3352 | loss: 3.446243
iter: 3353 | loss: 3.445942
iter: 3354 | loss: 3.445640
iter: 3355 | loss: 3.445339
iter: 3356 | loss: 3.445037
iter: 3357 | loss: 3.444736
iter: 3358 | loss: 3.444434
iter: 3359 | loss: 3.444133
iter: 3360 | loss: 3.443831
iter: 3361 | loss: 3.443530
iter: 3362 | loss: 3.443228
iter: 3363 | loss: 3.442927
iter: 3364 | loss: 3.442625
iter: 3365 | loss: 3.442324
iter: 3366 | loss: 3.442022
iter: 3367 | loss: 3.441721
iter: 3368 | loss: 3.441419
iter: 3369 | loss: 3.441118
iter: 3370 | loss: 3.440816
iter: 3371 | loss: 3.440515
iter: 3372 | loss: 3.440213
iter: 3373 | loss: 3.439912
iter: 3374 | loss: 3.439610
iter: 3375 | loss: 3.439308
iter: 3376 | loss: 3.439007
iter: 3377 | loss: 3.438705
iter: 3378 | loss: 3.438404
iter: 3379 | loss: 3.438102
iter: 3380 | loss: 3.437801
iter: 3381 | loss: 3.437499
iter: 3382 | loss: 3.437198
iter: 3383 | loss: 3.436896
iter: 3384 | loss: 3.436595
iter: 3385 | loss: 3.436293
iter: 3386 | loss: 3.435992
iter: 3387 | loss: 3.435690
iter: 3388 | loss: 3.435389
iter: 3389 | loss: 3.435087
iter: 3390 | loss: 3.434786
iter: 3391 | loss: 3.434484
iter: 3392 | loss: 3.434183
iter: 3393 | loss: 3.433881
iter: 3394 | loss: 3.433580
iter: 3395 | loss: 3.433278
iter: 3396 | loss: 3.432977
iter: 3397 | loss: 3.432675
iter: 3398 | loss: 3.432374
iter: 3399 | loss: 3.432072
iter: 3400 | loss: 3.431771
iter: 3401 | loss: 3.431469
iter: 3402 | loss: 3.431168
iter: 3403 | loss: 3.430866
iter: 3404 | loss: 3.430565
iter: 3405 | loss: 3.430263
iter: 3406 | loss: 3.429962
iter: 3407 | loss: 3.429660
iter: 3408 | loss: 3.429359
iter: 3409 | loss: 3.429057
iter: 3410 | loss: 3.428756
iter: 3411 | loss: 3.428454
iter: 3412 | loss: 3.428153
iter: 3413 | loss: 3.427851
iter: 3414 | loss: 3.427550
iter: 3415 | loss: 3.427248
iter: 3416 | loss: 3.426947
iter: 3417 | loss: 3.426645
iter: 3418 | loss: 3.426344
iter: 3419 | loss: 3.426042
iter: 3420 | loss: 3.425741
iter: 3421 | loss: 3.425439
iter: 3422 | loss: 3.425138
iter: 3423 | loss: 3.424836
iter: 3424 | loss: 3.424535
iter: 3425 | loss: 3.424233
iter: 3426 | loss: 3.423932
iter: 3427 | loss: 3.423630
iter: 3428 | loss: 3.423328
iter: 3429 | loss: 3.423027
iter: 3430 | loss: 3.422725
iter: 3431 | loss: 3.422424
iter: 3432 | loss: 3.422122
iter: 3433 | loss: 3.421821
iter: 3434 | loss: 3.421519
iter: 3435 | loss: 3.421218
iter: 3436 | loss: 3.420916
iter: 3437 | loss: 3.420615
iter: 3438 | loss: 3.420313
iter: 3439 | loss: 3.420012
iter: 3440 | loss: 3.419710
iter: 3441 | loss: 3.419409
iter: 3442 | loss: 3.419107
iter: 3443 | loss: 3.418806
iter: 3444 | loss: 3.418504
iter: 3445 | loss: 3.418203
iter: 3446 | loss: 3.417901
iter: 3447 | loss: 3.417600
iter: 3448 | loss: 3.417298
iter: 3449 | loss: 3.416997
iter: 3450 | loss: 3.416695
iter: 3451 | loss: 3.416394
iter: 3452 | loss: 3.416092
iter: 3453 | loss: 3.415791
iter: 3454 | loss: 3.415489
iter: 3455 | loss: 3.415188
iter: 3456 | loss: 3.414886
iter: 3457 | loss: 3.414585
iter: 3458 | loss: 3.414283
iter: 3459 | loss: 3.413982
iter: 3460 | loss: 3.413680
iter: 3461 | loss: 3.413379
iter: 3462 | loss: 3.413077
iter: 3463 | loss: 3.412776
iter: 3464 | loss: 3.412474
iter: 3465 | loss: 3.412173
iter: 3466 | loss: 3.411871
iter: 3467 | loss: 3.411570
iter: 3468 | loss: 3.411268
iter: 3469 | loss: 3.410967
iter: 3470 | loss: 3.410665
iter: 3471 | loss: 3.410364
iter: 3472 | loss: 3.410062
iter: 3473 | loss: 3.409761
iter: 3474 | loss: 3.409459
iter: 3475 | loss: 3.409158
iter: 3476 | loss: 3.408856
iter: 3477 | loss: 3.408555
iter: 3478 | loss: 3.408253
iter: 3479 | loss: 3.407951
iter: 3480 | loss: 3.407650
iter: 3481 | loss: 3.407348
iter: 3482 | loss: 3.407047
iter: 3483 | loss: 3.406745
iter: 3484 | loss: 3.406444
iter: 3485 | loss: 3.406142
iter: 3486 | loss: 3.405841
iter: 3487 | loss: 3.405539
iter: 3488 | loss: 3.405238
iter: 3489 | loss: 3.404936
iter: 3490 | loss: 3.404635
iter: 3491 | loss: 3.404333
iter: 3492 | loss: 3.404032
iter: 3493 | loss: 3.403730
iter: 3494 | loss: 3.403429
iter: 3495 | loss: 3.403127
iter: 3496 | loss: 3.402826
iter: 3497 | loss: 3.402524
iter: 3498 | loss: 3.402223
iter: 3499 | loss: 3.401921
iter: 3500 | loss: 3.401620
iter: 3501 | loss: 3.401318
iter: 3502 | loss: 3.401017
iter: 3503 | loss: 3.400715
iter: 3504 | loss: 3.400414
iter: 3505 | loss: 3.400112
iter: 3506 | loss: 3.399811
iter: 3507 | loss: 3.399509
iter: 3508 | loss: 3.399208
iter: 3509 | loss: 3.398906
iter: 3510 | loss: 3.398605
iter: 3511 | loss: 3.398303
iter: 3512 | loss: 3.398002
iter: 3513 | loss: 3.397700
iter: 3514 | loss: 3.397399
iter: 3515 | loss: 3.397097
iter: 3516 | loss: 3.396796
iter: 3517 | loss: 3.396494
iter: 3518 | loss: 3.396193
iter: 3519 | loss: 3.395891
iter: 3520 | loss: 3.395590
iter: 3521 | loss: 3.395288
iter: 3522 | loss: 3.394987
iter: 3523 | loss: 3.394685
iter: 3524 | loss: 3.394384
iter: 3525 | loss: 3.394082
iter: 3526 | loss: 3.393781
iter: 3527 | loss: 3.393479
iter: 3528 | loss: 3.393178
iter: 3529 | loss: 3.392876
iter: 3530 | loss: 3.392575
iter: 3531 | loss: 3.392273
iter: 3532 | loss: 3.391971
iter: 3533 | loss: 3.391670
iter: 3534 | loss: 3.391368
iter: 3535 | loss: 3.391067
iter: 3536 | loss: 3.390765
iter: 3537 | loss: 3.390464
iter: 3538 | loss: 3.390162
iter: 3539 | loss: 3.389861
iter: 3540 | loss: 3.389559
iter: 3541 | loss: 3.389258
iter: 3542 | loss: 3.388956
iter: 3543 | loss: 3.388655
iter: 3544 | loss: 3.388353
iter: 3545 | loss: 3.388052
iter: 3546 | loss: 3.387750
iter: 3547 | loss: 3.387449
iter: 3548 | loss: 3.387147
iter: 3549 | loss: 3.386846
iter: 3550 | loss: 3.386544
iter: 3551 | loss: 3.386243
iter: 3552 | loss: 3.385941
iter: 3553 | loss: 3.385640
iter: 3554 | loss: 3.385338
iter: 3555 | loss: 3.385037
iter: 3556 | loss: 3.384735
iter: 3557 | loss: 3.384434
iter: 3558 | loss: 3.384132
iter: 3559 | loss: 3.383831
iter: 3560 | loss: 3.383529
iter: 3561 | loss: 3.383228
iter: 3562 | loss: 3.382926
iter: 3563 | loss: 3.382625
iter: 3564 | loss: 3.382323
iter: 3565 | loss: 3.382022
iter: 3566 | loss: 3.381720
iter: 3567 | loss: 3.381419
iter: 3568 | loss: 3.381117
iter: 3569 | loss: 3.380816
iter: 3570 | loss: 3.380514
iter: 3571 | loss: 3.380213
iter: 3572 | loss: 3.379911
iter: 3573 | loss: 3.379610
iter: 3574 | loss: 3.379308
iter: 3575 | loss: 3.379007
iter: 3576 | loss: 3.378705
iter: 3577 | loss: 3.378404
iter: 3578 | loss: 3.378102
iter: 3579 | loss: 3.377801
iter: 3580 | loss: 3.377499
iter: 3581 | loss: 3.377198
iter: 3582 | loss: 3.376896
iter: 3583 | loss: 3.376594
iter: 3584 | loss: 3.376293
iter: 3585 | loss: 3.375991
iter: 3586 | loss: 3.375690
iter: 3587 | loss: 3.375388
iter: 3588 | loss: 3.375087
iter: 3589 | loss: 3.374785
iter: 3590 | loss: 3.374484
iter: 3591 | loss: 3.374182
iter: 3592 | loss: 3.373881
iter: 3593 | loss: 3.373579
iter: 3594 | loss: 3.373278
iter: 3595 | loss: 3.372976
iter: 3596 | loss: 3.372675
iter: 3597 | loss: 3.372373
iter: 3598 | loss: 3.372072
iter: 3599 | loss: 3.371770
iter: 3600 | loss: 3.371469
iter: 3601 | loss: 3.371167
iter: 3602 | loss: 3.370866
iter: 3603 | loss: 3.370564
iter: 3604 | loss: 3.370263
iter: 3605 | loss: 3.369961
iter: 3606 | loss: 3.369660
iter: 3607 | loss: 3.369358
iter: 3608 | loss: 3.369057
iter: 3609 | loss: 3.368755
iter
- ...TRUNCATED BY DUNE...
- (cd _build/default/examples/opt && ./single.exe)
- 
step: 0 | loss: 7.184738733
step: 10 | loss: 7.179276760
step: 20 | loss: 7.173209253
step: 30 | loss: 7.167143332
step: 40 | loss: 7.161079111
step: 50 | loss: 7.155016660
step: 60 | loss: 7.148956014
step: 70 | loss: 7.142897189
step: 80 | loss: 7.136840193
step: 90 | loss: 7.130785028
step: 100 | loss: 7.124731697
step: 110 | loss: 7.118680200
step: 120 | loss: 7.112630536
step: 130 | loss: 7.106582706
step: 140 | loss: 7.100536709
step: 150 | loss: 7.094492546
step: 160 | loss: 7.088450217
step: 170 | loss: 7.082409722
step: 180 | loss: 7.076371060
step: 190 | loss: 7.070334232
step: 200 | loss: 7.064299237
step: 210 | loss: 7.058266076
step: 220 | loss: 7.052234748
step: 230 | loss: 7.046205254
step: 240 | loss: 7.040177593
step: 250 | loss: 7.034151767
step: 260 | loss: 7.028127774
step: 270 | loss: 7.022105615
step: 280 | loss: 7.016085289
step: 290 | loss: 7.010066798
step: 300 | loss: 7.004050140
step: 310 | loss: 6.998035317
step: 320 | loss: 6.992022328
step: 330 | loss: 6.986011173
step: 340 | loss: 6.980001852
step: 350 | loss: 6.973994366
step: 360 | loss: 6.967988715
step: 370 | loss: 6.961984899
step: 380 | loss: 6.955982917
step: 390 | loss: 6.949982771
step: 400 | loss: 6.943984460
step: 410 | loss: 6.937987985
step: 420 | loss: 6.931993345
step: 430 | loss: 6.926000541
step: 440 | loss: 6.920009573
step: 450 | loss: 6.914020442
step: 460 | loss: 6.908033146
step: 470 | loss: 6.902047688
step: 480 | loss: 6.896064067
step: 490 | loss: 6.890082283
step: 500 | loss: 6.884102336
step: 510 | loss: 6.878124227
step: 520 | loss: 6.872147956
step: 530 | loss: 6.866173524
step: 540 | loss: 6.860200930
step: 550 | loss: 6.854230175
step: 560 | loss: 6.848261259
step: 570 | loss: 6.842294182
step: 580 | loss: 6.836328945
step: 590 | loss: 6.830365549
step: 600 | loss: 6.824403993
step: 610 | loss: 6.818444277
step: 620 | loss: 6.812486403
step: 630 | loss: 6.806530371
step: 640 | loss: 6.800576180
step: 650 | loss: 6.794623832
step: 660 | loss: 6.788673326
step: 670 | loss: 6.782724663
step: 680 | loss: 6.776777844
step: 690 | loss: 6.770832868
step: 700 | loss: 6.764889737
step: 710 | loss: 6.758948451
step: 720 | loss: 6.753009009
step: 730 | loss: 6.747071413
step: 740 | loss: 6.741135664
step: 750 | loss: 6.735201760
step: 760 | loss: 6.729269704
step: 770 | loss: 6.723339495
step: 780 | loss: 6.717411134
step: 790 | loss: 6.711484621
step: 800 | loss: 6.705559957
step: 810 | loss: 6.699637142
step: 820 | loss: 6.693716178
step: 830 | loss: 6.687797063
step: 840 | loss: 6.681879800
step: 850 | loss: 6.675964388
step: 860 | loss: 6.670050828
step: 870 | loss: 6.664139120
step: 880 | loss: 6.658229266
step: 890 | loss: 6.652321265
step: 900 | loss: 6.646415118
step: 910 | loss: 6.640510826
step: 920 | loss: 6.634608389
step: 930 | loss: 6.628707808
step: 940 | loss: 6.622809084
step: 950 | loss: 6.616912217
step: 960 | loss: 6.611017207
step: 970 | loss: 6.605124056
step: 980 | loss: 6.599232764
step: 990 | loss: 6.593343331
step: 1000 | loss: 6.587455758
step: 1010 | loss: 6.581570047
step: 1020 | loss: 6.575686197
step: 1030 | loss: 6.569804208
step: 1040 | loss: 6.563924083
step: 1050 | loss: 6.558045821
step: 1060 | loss: 6.552169424
step: 1070 | loss: 6.546294891
step: 1080 | loss: 6.540422224
step: 1090 | loss: 6.534551422
step: 1100 | loss: 6.528682488
step: 1110 | loss: 6.522815421
step: 1120 | loss: 6.516950223
step: 1130 | loss: 6.511086894
step: 1140 | loss: 6.505225434
step: 1150 | loss: 6.499365845
step: 1160 | loss: 6.493508127
step: 1170 | loss: 6.487652281
step: 1180 | loss: 6.481798307
step: 1190 | loss: 6.475946207
step: 1200 | loss: 6.470095981
step: 1210 | loss: 6.464247631
step: 1220 | loss: 6.458401155
step: 1230 | loss: 6.452556557
step: 1240 | loss: 6.446713835
step: 1250 | loss: 6.440872992
step: 1260 | loss: 6.435034027
step: 1270 | loss: 6.429196942
step: 1280 | loss: 6.423361738
step: 1290 | loss: 6.417528415
step: 1300 | loss: 6.411696973
step: 1310 | loss: 6.405867415
step: 1320 | loss: 6.400039740
step: 1330 | loss: 6.394213950
step: 1340 | loss: 6.388390045
step: 1350 | loss: 6.382568026
step: 1360 | loss: 6.376747894
step: 1370 | loss: 6.370929650
step: 1380 | loss: 6.365113295
step: 1390 | loss: 6.359298829
step: 1400 | loss: 6.353486254
step: 1410 | loss: 6.347675569
step: 1420 | loss: 6.341866777
step: 1430 | loss: 6.336059878
step: 1440 | loss: 6.330254873
step: 1450 | loss: 6.324451762
step: 1460 | loss: 6.318650547
step: 1470 | loss: 6.312851228
step: 1480 | loss: 6.307053807
step: 1490 | loss: 6.301258284
step: 1500 | loss: 6.295464660
step: 1510 | loss: 6.289672936
step: 1520 | loss: 6.283883113
step: 1530 | loss: 6.278095192
step: 1540 | loss: 6.272309173
step: 1550 | loss: 6.266525059
step: 1560 | loss: 6.260742848
step: 1570 | loss: 6.254962544
step: 1580 | loss: 6.249184145
step: 1590 | loss: 6.243407654
step: 1600 | loss: 6.237633071
step: 1610 | loss: 6.231860398
step: 1620 | loss: 6.226089634
step: 1630 | loss: 6.220320782
step: 1640 | loss: 6.214553841
step: 1650 | loss: 6.208788813
step: 1660 | loss: 6.203025699
step: 1670 | loss: 6.197264500
step: 1680 | loss: 6.191505217
step: 1690 | loss: 6.185747850
step: 1700 | loss: 6.179992401
step: 1710 | loss: 6.174238870
step: 1720 | loss: 6.168487259
step: 1730 | loss: 6.162737568
step: 1740 | loss: 6.156989799
step: 1750 | loss: 6.151243952
step: 1760 | loss: 6.145500028
step: 1770 | loss: 6.139758029
step: 1780 | loss: 6.134017955
step: 1790 | loss: 6.128279807
step: 1800 | loss: 6.122543586
step: 1810 | loss: 6.116809293
step: 1820 | loss: 6.111076929
step: 1830 | loss: 6.105346496
step: 1840 | loss: 6.099617993
step: 1850 | loss: 6.093891422
step: 1860 | loss: 6.088166784
step: 1870 | loss: 6.082444080
step: 1880 | loss: 6.076723311
step: 1890 | loss: 6.071004478
step: 1900 | loss: 6.065287581
step: 1910 | loss: 6.059572622
step: 1920 | loss: 6.053859602
step: 1930 | loss: 6.048148521
step: 1940 | loss: 6.042439381
step: 1950 | loss: 6.036732183
step: 1960 | loss: 6.031026927
step: 1970 | loss: 6.025323614
step: 1980 | loss: 6.019622246
step: 1990 | loss: 6.013922823
step: 2000 | loss: 6.008225347
step: 2010 | loss: 6.002529818
step: 2020 | loss: 5.996836237
step: 2030 | loss: 5.991144605
step: 2040 | loss: 5.985454924
step: 2050 | loss: 5.979767193
step: 2060 | loss: 5.974081415
step: 2070 | loss: 5.968397589
step: 2080 | loss: 5.962715718
step: 2090 | loss: 5.957035801
step: 2100 | loss: 5.951357840
step: 2110 | loss: 5.945681836
step: 2120 | loss: 5.940007789
step: 2130 | loss: 5.934335701
step: 2140 | loss: 5.928665573
step: 2150 | loss: 5.922997405
step: 2160 | loss: 5.917331198
step: 2170 | loss: 5.911666953
step: 2180 | loss: 5.906004672
step: 2190 | loss: 5.900344355
step: 2200 | loss: 5.894686002
step: 2210 | loss: 5.889029616
step: 2220 | loss: 5.883375196
step: 2230 | loss: 5.877722744
step: 2240 | loss: 5.872072261
step: 2250 | loss: 5.866423747
step: 2260 | loss: 5.860777203
step: 2270 | loss: 5.855132631
step: 2280 | loss: 5.849490030
step: 2290 | loss: 5.843849403
step: 2300 | loss: 5.838210749
step: 2310 | loss: 5.832574070
step: 2320 | loss: 5.826939366
step: 2330 | loss: 5.821306639
step: 2340 | loss: 5.815675889
step: 2350 | loss: 5.810047117
step: 2360 | loss: 5.804420324
step: 2370 | loss: 5.798795510
step: 2380 | loss: 5.793172677
step: 2390 | loss: 5.787551825
step: 2400 | loss: 5.781932956
step: 2410 | loss: 5.776316069
step: 2420 | loss: 5.770701166
step: 2430 | loss: 5.765088247
step: 2440 | loss: 5.759477314
step: 2450 | loss: 5.753868367
step: 2460 | loss: 5.748261406
step: 2470 | loss: 5.742656433
step: 2480 | loss: 5.737053448
step: 2490 | loss: 5.731452453
step: 2500 | loss: 5.725853447
step: 2510 | loss: 5.720256432
step: 2520 | loss: 5.714661407
step: 2530 | loss: 5.709068375
step: 2540 | loss: 5.703477336
step: 2550 | loss: 5.697888290
step: 2560 | loss: 5.692301237
step: 2570 | loss: 5.686716180
step: 2580 | loss: 5.681133118
step: 2590 | loss: 5.675552052
step: 2600 | loss: 5.669972982
step: 2610 | loss: 5.664395910
step: 2620 | loss: 5.658820836
step: 2630 | loss: 5.653247761
step: 2640 | loss: 5.647676684
step: 2650 | loss: 5.642107608
step: 2660 | loss: 5.636540532
step: 2670 | loss: 5.630975457
step: 2680 | loss: 5.625412383
step: 2690 | loss: 5.619851312
step: 2700 | loss: 5.614292243
step: 2710 | loss: 5.608735177
step: 2720 | loss: 5.603180116
step: 2730 | loss: 5.597627058
step: 2740 | loss: 5.592076006
step: 2750 | loss: 5.586526958
step: 2760 | loss: 5.580979917
step: 2770 | loss: 5.575434882
step: 2780 | loss: 5.569891853
step: 2790 | loss: 5.564350832
step: 2800 | loss: 5.558811818
step: 2810 | loss: 5.553274813
step: 2820 | loss: 5.547739816
step: 2830 | loss: 5.542206828
step: 2840 | loss: 5.536675849
step: 2850 | loss: 5.531146880
step: 2860 | loss: 5.525619921
step: 2870 | loss: 5.520094973
step: 2880 | loss: 5.514572035
step: 2890 | loss: 5.509051109
step: 2900 | loss: 5.503532194
step: 2910 | loss: 5.498015291
step: 2920 | loss: 5.492500400
step: 2930 | loss: 5.486987521
step: 2940 | loss: 5.481476655
step: 2950 | loss: 5.475967801
step: 2960 | loss: 5.470460961
step: 2970 | loss: 5.464956135
step: 2980 | loss: 5.459453322
step: 2990 | loss: 5.453952522
step: 3000 | loss: 5.448453737
step: 3010 | loss: 5.442956966
step: 3020 | loss: 5.437462209
step: 3030 | loss: 5.431969467
step: 3040 | loss: 5.426478739
step: 3050 | loss: 5.420990026
step: 3060 | loss: 5.415503328
step: 3070 | loss: 5.410018645
step: 3080 | loss: 5.404535977
step: 3090 | loss: 5.399055324
step: 3100 | loss: 5.393576686
step: 3110 | loss: 5.388100064
step: 3120 | loss: 5.382625456
step: 3130 | loss: 5.377152864
step: 3140 | loss: 5.371682287
step: 3150 | loss: 5.366213725
step: 3160 | loss: 5.360747178
step: 3170 | loss: 5.355282647
step: 3180 | loss: 5.349820130
step: 3190 | loss: 5.344359628
step: 3200 | loss: 5.338901142
step: 3210 | loss: 5.333444669
step: 3220 | loss: 5.327990212
step: 3230 | loss: 5.322537768
step: 3240 | loss: 5.317087340
step: 3250 | loss: 5.311638925
step: 3260 | loss: 5.306192524
step: 3270 | loss: 5.300748136
step: 3280 | loss: 5.295305763
step: 3290 | loss: 5.289865402
step: 3300 | loss: 5.284427054
step: 3310 | loss: 5.278990719
step: 3320 | loss: 5.273556397
step: 3330 | loss: 5.268124086
step: 3340 | loss: 5.262693788
step: 3350 | loss: 5.257265500
step: 3360 | loss: 5.251839224
step: 3370 | loss: 5.246414959
step: 3380 | loss: 5.240992704
step: 3390 | loss: 5.235572459
step: 3400 | loss: 5.230154223
step: 3410 | loss: 5.224737997
step: 3420 | loss: 5.219323779
step: 3430 | loss: 5.213911569
step: 3440 | loss: 5.208501368
step: 3450 | loss: 5.203093173
step: 3460 | loss: 5.197686985
step: 3470 | loss: 5.192282804
step: 3480 | loss: 5.186880628
step: 3490 | loss: 5.181480457
step: 3500 | loss: 5.176082291
step: 3510 | loss: 5.170686128
step: 3520 | loss: 5.165291970
step: 3530 | loss: 5.159899813
step: 3540 | loss: 5.154509659
step: 3550 | loss: 5.149121507
step: 3560 | loss: 5.143735355
step: 3570 | loss: 5.138351204
step: 3580 | loss: 5.132969052
step: 3590 | loss: 5.127588899
step: 3600 | loss: 5.122210744
step: 3610 | loss: 5.116834586
step: 3620 | loss: 5.111460425
step: 3630 | loss: 5.106088260
step: 3640 | loss: 5.100718090
step: 3650 | loss: 5.095349914
step: 3660 | loss: 5.089983732
step: 3670 | loss: 5.084619543
step: 3680 | loss: 5.079257345
step: 3690 | loss: 5.073897139
step: 3700 | loss: 5.068538922
step: 3710 | loss: 5.063182695
step: 3720 | loss: 5.057828457
step: 3730 | loss: 5.052476206
step: 3740 | loss: 5.047125942
step: 3750 | loss: 5.041777664
step: 3760 | loss: 5.036431370
step: 3770 | loss: 5.031087061
step: 3780 | loss: 5.025744734
step: 3790 | loss: 5.020404390
step: 3800 | loss: 5.015066027
step: 3810 | loss: 5.009729643
step: 3820 | loss: 5.004395240
step: 3830 | loss: 4.999062814
step: 3840 | loss: 4.993732365
step: 3850 | loss: 4.988403893
step: 3860 | loss: 4.983077396
step: 3870 | loss: 4.977752873
step: 3880 | loss: 4.972430323
step: 3890 | loss: 4.967109745
step: 3900 | loss: 4.961791138
step: 3910 | loss: 4.956474501
step: 3920 | loss: 4.951159833
step: 3930 | loss: 4.945847133
step: 3940 | loss: 4.940536400
step: 3950 | loss: 4.935227632
step: 3960 | loss: 4.929920829
step: 3970 | loss: 4.924615989
step: 3980 | loss: 4.919313112
step: 3990 | loss: 4.914012197
step: 4000 | loss: 4.908713241
step: 4010 | loss: 4.903416245
step: 4020 | loss: 4.898121206
step: 4030 | loss: 4.892828125
step: 4040 | loss: 4.887536999
step: 4050 | loss: 4.882247828
step: 4060 | loss: 4.876960611
step: 4070 | loss: 4.871675346
step: 4080 | loss: 4.866392033
step: 4090 | loss: 4.861110669
step: 4100 | loss: 4.855831255
step: 4110 | loss: 4.850553789
step: 4120 | loss: 4.845278270
step: 4130 | loss: 4.840004696
step: 4140 | loss: 4.834733067
step: 4150 | loss: 4.829463382
step: 4160 | loss: 4.824195639
step: 4170 | loss: 4.818929838
step: 4180 | loss: 4.813665977
step: 4190 | loss: 4.808404055
step: 4200 | loss: 4.803144071
step: 4210 | loss: 4.797886024
step: 4220 | loss: 4.792629913
step: 4230 | loss: 4.787375736
step: 4240 | loss: 4.782123494
step: 4250 | loss: 4.776873185
step: 4260 | loss: 4.771624807
step: 4270 | loss: 4.766378359
step: 4280 | loss: 4.761133842
step: 4290 | loss: 4.755891253
step: 4300 | loss: 4.750650592
step: 4310 | loss: 4.745411857
step: 4320 | loss: 4.740175048
step: 4330 | loss: 4.734940164
step: 4340 | loss: 4.729707203
step: 4350 | loss: 4.724476165
step: 4360 | loss: 4.719247049
step: 4370 | loss: 4.714019854
step: 4380 | loss: 4.708794579
step: 4390 | loss: 4.703571223
step: 4400 | loss: 4.698349785
step: 4410 | loss: 4.693130265
step: 4420 | loss: 4.687912661
step: 4430 | loss: 4.682696973
step: 4440 | loss: 4.677483200
step: 4450 | loss: 4.672271341
step: 4460 | loss: 4.667061395
step: 4470 | loss: 4.661853362
step: 4480 | loss: 4.656647241
step: 4490 | loss: 4.651443031
step: 4500 | loss: 4.646240731
step: 4510 | loss: 4.641040341
step: 4520 | loss: 4.635841860
step: 4530 | loss: 4.630645288
step: 4540 | loss: 4.625450623
step: 4550 | loss: 4.620257866
step: 4560 | loss: 4.615067016
step: 4570 | loss: 4.609878071
step: 4580 | loss: 4.604691033
step: 4590 | loss: 4.599505900
step: 4600 | loss: 4.594322671
step: 4610 | loss: 4.589141347
step: 4620 | loss: 4.583961926
step: 4630 | loss: 4.578784409
step: 4640 | loss: 4.573608795
step: 4650 | loss: 4.568435084
step: 4660 | loss: 4.563263276
step: 4670 | loss: 4.558093369
step: 4680 | loss: 4.552925365
step: 4690 | loss: 4.547759262
step: 4700 | loss: 4.542595061
step: 4710 | loss: 4.537432761
step: 4720 | loss: 4.532272362
step: 4730 | loss: 4.527113865
step: 4740 | loss: 4.521957268
step: 4750 | loss: 4.516802573
step: 4760 | loss: 4.511649778
step: 4770 | loss: 4.506498885
step: 4780 | loss: 4.501349892
step: 4790 | loss: 4.496202801
step: 4800 | loss: 4.491057611
step: 4810 | loss: 4.485914322
step: 4820 | loss: 4.480772934
step: 4830 | loss: 4.475633448
step: 4840 | loss: 4.470495865
step: 4850 | loss: 4.465360183
step: 4860 | loss: 4.460226404
step: 4870 | loss: 4.455094527
step: 4880 | loss: 4.449964554
step: 4890 | loss: 4.444836484
step: 4900 | loss: 4.439710319
step: 4910 | loss: 4.434586057
step: 4920 | loss: 4.429463701
step: 4930 | loss: 4.424343250
step: 4940 | loss: 4.419224704
step: 4950 | loss: 4.414108066
step: 4960 | loss: 4.408993334
step: 4970 | loss: 4.403880511
step: 4980 | loss: 4.398769595
step: 4990 | loss: 4.393660589
step: 5000 | loss: 4.388553493
step: 5010 | loss: 4.383448307
step: 5020 | loss: 4.378345033
step: 5030 | loss: 4.373243672
step: 5040 | loss: 4.368144223
step: 5050 | loss: 4.363046688
step: 5060 | loss: 4.357951069
step: 5070 | loss: 4.352857365
step: 5080 | loss: 4.347765578
step: 5090 | loss: 4.342675709
step: 5100 | loss: 4.337587759
step: 5110 | loss: 4.332501729
step: 5120 | loss: 4.327417620
step: 5130 | loss: 4.322335433
step: 5140 | loss: 4.317255170
step: 5150 | loss: 4.312176831
step: 5160 | loss: 4.307100418
step: 5170 | loss: 4.302025933
step: 5180 | loss: 4.296953375
step: 5190 | loss: 4.291882747
step: 5200 | loss: 4.286814050
step: 5210 | loss: 4.281747284
step: 5220 | loss: 4.276682453
step: 5230 | loss: 4.271619557
step: 5240 | loss: 4.266558596
step: 5250 | loss: 4.261499574
step: 5260 | loss: 4.256442491
step: 5270 | loss: 4.251387349
step: 5280 | loss: 4.246334149
step: 5290 | loss: 4.241282892
step: 5300 | loss: 4.236233581
step: 5310 | loss: 4.231186217
step: 5320 | loss: 4.226140801
step: 5330 | loss: 4.221097336
step: 5340 | loss: 4.216055822
step: 5350 | loss: 4.211016261
step: 5360 | loss: 4.205978655
step: 5370 | loss: 4.200943006
step: 5380 | loss: 4.195909315
step: 5390 | loss: 4.190877584
step: 5400 | loss: 4.185847815
step: 5410 | loss: 4.180820009
step: 5420 | loss: 4.175794169
step: 5430 | loss: 4.170770296
step: 5440 | loss: 4.165748391
step: 5450 | loss: 4.160728457
step: 5460 | loss: 4.155710495
step: 5470 | loss: 4.150694507
step: 5480 | loss: 4.145680495
step: 5490 | loss: 4.140668461
step: 5500 | loss: 4.135658406
step: 5510 | loss: 4.130650333
step: 5520 | loss: 4.125644243
step: 5530 | loss: 4.120640139
step: 5540 | loss: 4.115638021
step: 5550 | loss: 4.110637892
step: 5560 | loss: 4.105639754
step: 5570 | loss: 4.100643608
step: 5580 | loss: 4.095649457
step: 5590 | loss: 4.090657302
step: 5600 | loss: 4.085667145
step: 5610 | loss: 4.080678988
step: 5620 | loss: 4.075692834
step: 5630 | loss: 4.070708683
step: 5640 | loss: 4.065726538
step: 5650 | loss: 4.060746400
step: 5660 | loss: 4.055768272
step: 5670 | loss: 4.050792155
step: 5680 | loss: 4.045818052
step: 5690 | loss: 4.040845964
step: 5700 | loss: 4.035875892
step: 5710 | loss: 4.030907840
step: 5720 | loss: 4.025941808
step: 5730 | loss: 4.020977798
step: 5740 | loss: 4.016015813
step: 5750 | loss: 4.011055854
step: 5760 | loss: 4.006097923
step: 5770 | loss: 4.001142022
step: 5780 | loss: 3.996188152
step: 5790 | loss: 3.991236316
step: 5800 | loss: 3.986286515
step: 5810 | loss: 3.981338751
step: 5820 | loss: 3.976393026
step: 5830 | loss: 3.971449341
step: 5840 | loss: 3.966507699
step: 5850 | loss: 3.961568100
step: 5860 | loss: 3.956630547
step: 5870 | loss: 3.951695041
step: 5880 | loss: 3.946761584
step: 5890 | loss: 3.941830178
step: 5900 | loss: 3.936900824
step: 5910 | loss: 3.931973524
step: 5920 | loss: 3.927048280
step: 5930 | loss: 3.922125093
step: 5940 | loss: 3.917203964
step: 5950 | loss: 3.912284896
step: 5960 | loss: 3.907367890
step: 5970 | loss: 3.902452947
step: 5980 | loss: 3.897540069
step: 5990 | loss: 3.892629257
step: 6000 | loss: 3.887720513
step: 6010 | loss: 3.882813838
step: 6020 | loss: 3.877909233
step: 6030 | loss: 3.873006701
step: 6040 | loss: 3.868106242
step: 6050 | loss: 3.863207858
step: 6060 | loss: 3.858311550
step: 6070 | loss: 3.853417319
step: 6080 | loss: 3.848525166
step: 6090 | loss: 3.843635094
step: 6100 | loss: 3.838747103
step: 6110 | loss: 3.833861194
step: 6120 | loss: 3.828977368
step: 6130 | loss: 3.824095627
step: 6140 | loss: 3.819215971
step: 6150 | loss: 3.814338403
step: 6160 | loss: 3.809462922
step: 6170 | loss: 3.804589530
step: 6180 | loss: 3.799718228
step: 6190 | loss: 3.794849016
step: 6200 | loss: 3.789981897
step: 6210 | loss: 3.785116870
step: 6220 | loss: 3.780253937
step: 6230 | loss: 3.775393098
step: 6240 | loss: 3.770534354
step: 6250 | loss: 3.765677706
step: 6260 | loss: 3.760823156
step: 6270 | loss: 3.755970702
step: 6280 | loss: 3.751120347
step: 6290 | loss: 3.746272091
step: 6300 | loss: 3.741425934
step: 6310 | loss: 3.736581877
step: 6320 | loss: 3.731739921
step: 6330 | loss: 3.726900065
step: 6340 | loss: 3.722062312
step: 6350 | loss: 3.717226661
step: 6360 | loss: 3.712393112
step: 6370 | loss: 3.707561666
step: 6380 | loss: 3.702732323
step: 6390 | loss: 3.697905084
step: 6400 | loss: 3.693079948
step: 6410 | loss: 3.688256917
step: 6420 | loss: 3.683435990
step: 6430 | loss: 3.678617167
step: 6440 | loss: 3.673800449
step: 6450 | loss: 3.668985836
step: 6460 | loss: 3.664173327
step: 6470 | loss: 3.659362923
step: 6480 | loss: 3.654554623
step: 6490 | loss: 3.649748429
step: 6500 | loss: 3.644944338
step: 6510 | loss: 3.640142352
step: 6520 | loss: 3.635342471
step: 6530 | loss: 3.630544693
step: 6540 | loss: 3.625749019
step: 6550 | loss: 3.620955448
step: 6560 | loss: 3.616163981
step: 6570 | loss: 3.611374616
step: 6580 | loss: 3.606587353
step: 6590 | loss: 3.601802192
step: 6600 | loss: 3.597019132
step: 6610 | loss: 3.592238173
step: 6620 | loss: 3.587459314
step: 6630 | loss: 3.582682555
step: 6640 | loss: 3.577907894
step: 6650 | loss: 3.573135332
step: 6660 | loss: 3.568364867
step: 6670 | loss: 3.563596498
step: 6680 | loss: 3.558830225
step: 6690 | loss: 3.554066047
step: 6700 | loss: 3.549303963
step: 6710 | loss: 3.544543971
step: 6720 | loss: 3.539786071
step: 6730 | loss: 3.535030263
step: 6740 | loss: 3.530276543
step: 6750 | loss: 3.525524913
step: 6760 | loss: 3.520775369
step: 6770 | loss: 3.516027912
step: 6780 | loss: 3.511282540
step: 6790 | loss: 3.506539251
step: 6800 | loss: 3.501798044
step: 6810 | loss: 3.497058918
step: 6820 | loss: 3.492321871
step: 6830 | loss: 3.487586902
step: 6840 | loss: 3.482854008
step: 6850 | loss: 3.478123190
step: 6860 | loss: 3.473394444
step: 6870 | loss: 3.468667770
step: 6880 | loss: 3.463943165
step: 6890 | loss: 3.459220628
step: 6900 | loss: 3.454500156
step: 6910 | loss: 3.449781749
step: 6920 | loss: 3.445065404
step: 6930 | loss: 3.440351119
step: 6940 | loss: 3.435638892
step: 6950 | loss: 3.430928721
step: 6960 | loss: 3.426220604
step: 6970 | loss: 3.421514539
step: 6980 | loss: 3.416810524
step: 6990 | loss: 3.412108556
step: 7000 | loss: 3.407408634
step: 7010 | loss: 3.402710754
step: 7020 | loss: 3.398014915
step: 7030 | loss: 3.393321114
step: 7040 | loss: 3.388629349
step: 7050 | loss: 3.383939616
step: 7060 | loss: 3.379251915
step: 7070 | loss: 3.374566241
step: 7080 | loss: 3.369882593
step: 7090 | loss: 3.365200968
step: 7100 | loss: 3.360521363
step: 7110 | loss: 3.355843775
step: 7120 | loss: 3.351168202
step: 7130 | loss: 3.346494640
step: 7140 | loss: 3.341823087
step: 7150 | loss: 3.337153540
step: 7160 | loss: 3.332485996
step: 7170 | loss: 3.327820452
step: 7180 | loss: 3.323156905
step: 7190 | loss: 3.318495351
step: 7200 | loss: 3.313835788
step: 7210 | loss: 3.309178213
step: 7220 | loss: 3.304522622
step: 7230 | loss: 3.299869012
step: 7240 | loss: 3.295217380
step: 7250 | loss: 3.290567722
step: 7260 | loss: 3.285920036
step: 7270 | loss: 3.281274317
step: 7280 | loss: 3.276630562
step: 7290 | loss: 3.271988768
step: 7300 | loss: 3.267348931
step: 7310 | loss: 3.262711048
step: 7320 | loss: 3.258075115
step: 7330 | loss: 3.253441129
step: 7340 | loss: 3.248809085
step: 7350 | loss: 3.244178981
step: 7360 | loss: 3.239550812
step: 7370 | loss: 3.234924574
step: 7380 | loss: 3.230300265
step: 7390 | loss: 3.225677879
step: 7400 | loss: 3.221057414
step: 7410 | loss: 3.216438865
step: 7420 | loss: 3.211822228
step: 7430 | loss: 3.207207500
step: 7440 | loss: 3.202594677
step: 7450 | loss: 3.197983753
step: 7460 | loss: 3.193374727
step: 7470 | loss: 3.188767592
step: 7480 | loss: 3.184162346
step: 7490 | loss: 3.179558984
step: 7500 | loss: 3.174957502
step: 7510 | loss: 3.170357896
step: 7520 | loss: 3.165760161
step: 7530 | loss: 3.161164294
step: 7540 | loss: 3.156570290
step: 7550 | loss: 3.151978145
step: 7560 | loss: 3.147387855
step: 7570 | loss: 3.142799414
step: 7580 | loss: 3.138212820
step: 7590 | loss: 3.133628067
step: 7600 | loss: 3.129045152
step: 7610 | loss: 3.124464069
step: 7620 | loss: 3.119884815
step: 7630 | loss: 3.115307385
step: 7640 | loss: 3.110731774
step: 7650 | loss: 3.106157979
step: 7660 | loss: 3.101585994
step: 7670 | loss: 3.097015815
step: 7680 | loss: 3.092447438
step: 7690 | loss: 3.087880858
step: 7700 | loss: 3.083316070
step: 7710 | loss: 3.078753071
step: 7720 | loss: 3.074191854
step: 7730 | loss: 3.069632417
step: 7740 | loss: 3.065074754
step: 7750 | loss: 3.060518861
step: 7760 | loss: 3.055964732
step: 7770 | loss: 3.051412365
step: 7780 | loss: 3.046861753
step: 7790 | loss: 3.042312892
step: 7800 | loss: 3.037765778
step: 7810 | loss: 3.033220406
step: 7820 | loss: 3.028676771
step: 7830 | loss: 3.024134869
step: 7840 | loss: 3.019594695
step: 7850 | loss: 3.015056244
step: 7860 | loss: 3.010519512
step: 7870 | loss: 3.005984495
step: 7880 | loss: 3.001451186
step: 7890 | loss: 2.996919582
step: 7900 | loss: 2.992389679
step: 7910 | loss: 2.987861471
step: 7920 | loss: 2.983334953
step: 7930 | loss: 2.978810122
step: 7940 | loss: 2.974286972
step: 7950 | loss: 2.969765499
step: 7960 | loss: 2.965245699
step: 7970 | loss: 2.960727565
step: 7980 | loss: 2.956211095
step: 7990 | loss: 2.951696283
step: 8000 | loss: 2.947183124
step: 8010 | loss: 2.942671614
step: 8020 | loss: 2.938161749
step: 8030 | loss: 2.933653523
step: 8040 | loss: 2.929146933
step: 8050 | loss: 2.924641972
step: 8060 | loss: 2.920138638
step: 8070 | loss: 2.915636925
step: 8080 | loss: 2.911136829
step: 8090 | loss: 2.906638344
step: 8100 | loss: 2.902141468
step: 8110 | loss: 2.897646194
step: 8120 | loss: 2.893152519
step: 8130 | loss: 2.888660437
step: 8140 | loss: 2.884169945
step: 8150 | loss: 2.879681037
step: 8160 | loss: 2.875193710
step: 8170 | loss: 2.870707958
step: 8180 | loss: 2.866223777
step: 8190 | loss: 2.861741163
step: 8200 | loss: 2.857260112
step: 8210 | loss: 2.852780617
step: 8220 | loss: 2.848302676
step: 8230 | loss: 2.843826284
step: 8240 | loss: 2.839351436
step: 8250 | loss: 2.834878128
step: 8260 | loss: 2.830406355
step: 8270 | loss: 2.825936112
step: 8280 | loss: 2.821467397
step: 8290 | loss: 2.817000203
step: 8300 | loss: 2.812534526
step: 8310 | loss: 2.808070363
step: 8320 | loss: 2.803607708
step: 8330 | loss: 2.799146558
step: 8340 | loss: 2.794686907
step: 8350 | loss: 2.790228752
step: 8360 | loss: 2.785772088
step: 8370 | loss: 2.781316910
step: 8380 | loss: 2.776863215
step: 8390 | loss: 2.772410997
step: 8400 | loss: 2.767960253
step: 8410 | loss: 2.763510978
step: 8420 | loss: 2.759063167
step: 8430 | loss: 2.754616816
step: 8440 | loss: 2.750171922
step: 8450 | loss: 2.745728478
step: 8460 | loss: 2.741286482
step: 8470 | loss: 2.736845928
step: 8480 | loss: 2.732406812
step: 8490 | loss: 2.727969130
step: 8500 | loss: 2.723532878
step: 8510 | loss: 2.719098050
step: 8520 | loss: 2.714664642
step: 8530 | loss: 2.710232651
step: 8540 | loss: 2.705802071
step: 8550 | loss: 2.701372898
step: 8560 | loss: 2.696945128
step: 8570 | loss: 2.692518756
step: 8580 | loss: 2.688093778
step: 8590 | loss: 2.683670188
step: 8600 | loss: 2.679247984
step: 8610 | loss: 2.674827159
step: 8620 | loss: 2.670407710
step: 8630 | loss: 2.665989631
step: 8640 | loss: 2.661572919
step: 8650 | loss: 2.657157569
step: 8660 | loss: 2.652743576
step: 8670 | loss: 2.648330935
step: 8680 | loss: 2.643919643
step: 8690 | loss: 2.639509693
step: 8700 | loss: 2.635101082
step: 8710 | loss: 2.630693804
step: 8720 | loss: 2.626287856
step: 8730 | loss: 2.621883231
step: 8740 | loss: 2.617479926
step: 8750 | loss: 2.613077936
step: 8760 | loss: 2.608677255
step: 8770 | loss: 2.604277879
step: 8780 | loss: 2.599879803
step: 8790 | loss: 2.595483021
step: 8800 | loss: 2.591087530
step: 8810 | loss: 2.586693324
step: 8820 | loss: 2.582300397
step: 8830 | loss: 2.577908746
step: 8840 | loss: 2.573518364
step: 8850 | loss: 2.569129247
step: 8860 | loss: 2.564741389
step: 8870 | loss: 2.560354785
step: 8880 | loss: 2.555969430
step: 8890 | loss: 2.551585319
step: 8900 | loss: 2.547202447
step: 8910 | loss: 2.542820807
step: 8920 | loss: 2.538440395
step: 8930 | loss: 2.534061205
step: 8940 | loss: 2.529683231
step: 8950 | loss: 2.525306469
step: 8960 | loss: 2.520930912
step: 8970 | loss: 2.516556555
step: 8980 | loss: 2.512183392
step: 8990 | loss: 2.507811418
step: 9000 | loss: 2.503440627
step: 9010 | loss: 2.499071013
step: 9020 | loss: 2.494702570
step: 9030 | loss: 2.490335292
step: 9040 | loss: 2.485969174
step: 9050 | loss: 2.481604210
step: 9060 | loss: 2.477240392
step: 9070 | loss: 2.472877717
step: 9080 | loss: 2.468516176
step: 9090 | loss: 2.464155765
step: 9100 | loss: 2.459796477
step: 9110 | loss: 2.455438305
step: 9120 | loss: 2.451081244
step: 9130 | loss: 2.446725287
step: 9140 | loss: 2.442370428
step: 9150 | loss: 2.438016660
step: 9160 | loss: 2.433663977
step: 9170 | loss: 2.429312373
step: 9180 | loss: 2.424961840
step: 9190 | loss: 2.420612373
step: 9200 | loss: 2.416263963
step: 9210 | loss: 2.411916606
step: 9220 | loss: 2.407570294
step: 9230 | loss: 2.403225021
step: 9240 | loss: 2.398880778
step: 9250 | loss: 2.394537561
step: 9260 | loss: 2.390195361
step: 9270 | loss: 2.385854172
step: 9280 | loss: 2.381513986
step: 9290 | loss: 2.377174798
step: 9300 | loss: 2.372836599
step: 9310 | loss: 2.368499382
step: 9320 | loss: 2.364163141
step: 9330 | loss: 2.359827868
step: 9340 | loss: 2.355493555
step: 9350 | loss: 2.351160197
step: 9360 | loss: 2.346827784
step: 9370 | loss: 2.342496311
step: 9380 | loss: 2.338165769
step: 9390 | loss: 2.333836151
step: 9400 | loss: 2.329507450
step: 9410 | loss: 2.325179657
step: 9420 | loss: 2.320852767
step: 9430 | loss: 2.316526770
step: 9440 | loss: 2.312201660
step: 9450 | loss: 2.307877429
step: 9460 | loss: 2.303554069
step: 9470 | loss: 2.299231572
step: 9480 | loss: 2.294909932
step: 9490 | loss: 2.290589139
step: 9500 | loss: 2.286269187
step: 9510 | loss: 2.281950067
step: 9520 | loss: 2.277631772
step: 9530 | loss: 2.273314294
step: 9540 | loss: 2.268997625
step: 9550 | loss: 2.264681757
step: 9560 | loss: 2.260366683
step: 9570 | loss: 2.256052394
step: 9580 | loss: 2.251738883
step: 9590 | loss: 2.247426141
step: 9600 | loss: 2.243114162
step: 9610 | loss: 2.238802936
step: 9620 | loss: 2.234492456
step: 9630 | loss: 2.230182714
step: 9640 | loss: 2.225873703
step: 9650 | loss: 2.221565413
step: 9660 | loss: 2.217257838
step: 9670 | loss: 2.212950969
step: 9680 | loss: 2.208644798
step: 9690 | loss: 2.204339317
step: 9700 | loss: 2.200034519
step: 9710 | loss: 2.195730395
step: 9720 | loss: 2.191426938
step: 9730 | loss: 2.187124139
step: 9740 | loss: 2.182821992
step: 9750 | loss: 2.178520487
step: 9760 | loss: 2.174219617
step: 9770 | loss: 2.169919374
step: 9780 | loss: 2.165619750
step: 9790 | loss: 2.161320738
step: 9800 | loss: 2.157022329
step: 9810 | loss: 2.152724516
step: 9820 | loss: 2.148427291
step: 9830 | loss: 2.144130647
step: 9840 | loss: 2.139834575
step: 9850 | loss: 2.135539068
step: 9860 | loss: 2.131244119
step: 9870 | loss: 2.126949719
step: 9880 | loss: 2.122655862
step: 9890 | loss: 2.118362539
step: 9900 | loss: 2.114069743
step: 9910 | loss: 2.109777467
step: 9920 | loss: 2.105485703
step: 9930 | loss: 2.101194444
step: 9940 | loss: 2.096903683
step: 9950 | loss: 2.092613412
step: 9960 | loss: 2.088323624
step: 9970 | loss: 2.084034311
step: 9980 | loss: 2.079745467
step: 9990 | loss: 2.075457085
step: 10000 | loss: 2.071169158
step: 10010 | loss: 2.066881677
step: 10020 | loss: 2.062594638
step: 10030 | loss: 2.058308032
step: 10040 | loss: 2.054021853
step: 10050 | loss: 2.049736095
step: 10060 | loss: 2.045450750
step: 10070 | loss: 2.041165811
step: 10080 | loss: 2.036881273
step: 10090 | loss: 2.032597129
step: 10100 | loss: 2.028313372
step: 10110 | loss: 2.024029996
step: 10120 | loss: 2.019746995
step: 10130 | loss: 2.015464362
step: 10140 | loss: 2.011182092
step: 10150 | loss: 2.006900178
step: 10160 | loss: 2.002618613
step: 10170 | loss: 1.998337394
step: 10180 | loss: 1.994056512
step: 10190 | loss: 1.989775963
step: 10200 | loss: 1.985495741
step: 10210 | loss: 1.981215840
step: 10220 | loss: 1.976936254
step: 10230 | loss: 1.972656979
step: 10240 | loss: 1.968378009
step: 10250 | loss: 1.964099337
step: 10260 | loss: 1.959820960
step: 10270 | loss: 1.955542872
step: 10280 | loss: 1.951265068
step: 10290 | loss: 1.946987542
step: 10300 | loss: 1.942710291
step: 10310 | loss: 1.938433308
step: 10320 | loss: 1.934156590
step: 10330 | loss: 1.929880131
step: 10340 | loss: 1.925603927
step: 10350 | loss: 1.921327974
step: 10360 | loss: 1.917052267
step: 10370 | loss: 1.912776801
step: 10380 | loss: 1.908501572
step: 10390 | loss: 1.904226577
step: 10400 | loss: 1.899951810
step: 10410 | loss: 1.895677269
step: 10420 | loss: 1.891402949
step: 10430 | loss: 1.887128845
step: 10440 | loss: 1.882854955
step: 10450 | loss: 1.878581275
step: 10460 | loss: 1.874307800
step: 10470 | loss: 1.870034528
step: 10480 | loss: 1.865761455
step: 10490 | loss: 1.861488577
step: 10500 | loss: 1.857215891
step: 10510 | loss: 1.852943395
step: 10520 | loss: 1.848671084
step: 10530 | loss: 1.844398956
step: 10540 | loss: 1.840127007
step: 10550 | loss: 1.835855235
step: 10560 | loss: 1.831583637
step: 10570 | loss: 1.827312210
step: 10580 | loss: 1.823040951
step: 10590 | loss: 1.818769858
step: 10600 | loss: 1.814498928
step: 10610 | loss: 1.810228158
step: 10620 | loss: 1.805957547
step: 10630 | loss: 1.801687091
step: 10640 | loss: 1.797416788
step: 10650 | loss: 1.793146637
step: 10660 | loss: 1.788876635
step: 10670 | loss: 1.784606779
step: 10680 | loss: 1.780337068
step: 10690 | loss: 1.776067500
step: 10700 | loss: 1.771798073
step: 10710 | loss: 1.767528785
step: 10720 | loss: 1.763259634
step: 10730 | loss: 1.758990619
step: 10740 | loss: 1.754721737
step: 10750 | loss: 1.750452987
step: 10760 | loss: 1.746184368
step: 10770 | loss: 1.741915877
step: 10780 | loss: 1.737647515
step: 10790 | loss: 1.733379278
step: 10800 | loss: 1.729111165
step: 10810 | loss: 1.724843177
step: 10820 | loss: 1.720575310
step: 10830 | loss: 1.716307563
step: 10840 | loss: 1.712039937
step: 10850 | loss: 1.707772429
step: 10860 | loss: 1.703505038
step: 10870 | loss: 1.699237764
step: 10880 | loss: 1.694970604
step: 10890 | loss: 1.690703559
step: 10900 | loss: 1.686436628
step: 10910 | loss: 1.682169809
step: 10920 | loss: 1.677903101
step: 10930 | loss: 1.673636504
step: 10940 | loss: 1.669370017
step: 10950 | loss: 1.665103640
step: 10960 | loss: 1.660837370
step: 10970 | loss: 1.656571209
step: 10980 | loss: 1.652305154
step: 10990 | loss: 1.648039207
step: 11000 | loss: 1.643773365
step: 11010 | loss: 1.639507628
step: 11020 | loss: 1.635241996
step: 11030 | loss: 1.630976468
step: 11040 | loss: 1.626711045
step: 11050 | loss: 1.622445724
step: 11060 | loss: 1.618180506
step: 11070 | loss: 1.613915391
step: 11080 | loss: 1.609650378
step: 11090 | loss: 1.605385467
step: 11100 | loss: 1.601120657
step: 11110 | loss: 1.596855948
step: 11120 | loss: 1.592591340
step: 11130 | loss: 1.588326832
step: 11140 | loss: 1.584062425
step: 11150 | loss: 1.579798118
step: 11160 | loss: 1.575533910
step: 11170 | loss: 1.571269802
step: 11180 | loss: 1.567005794
step: 11190 | loss: 1.562741884
step: 11200 | loss: 1.558478074
step: 11210 | loss: 1.554214363
step: 11220 | loss: 1.549950750
step: 11230 | loss: 1.545687236
step: 11240 | loss: 1.541423821
step: 11250 | loss: 1.537160505
step: 11260 | loss: 1.532897287
step: 11270 | loss: 1.528634167
step: 11280 | loss: 1.524371146
step: 11290 | loss: 1.520108223
step: 11300 | loss: 1.515845399
step: 11310 | loss: 1.511582673
step: 11320 | loss: 1.507320046
step: 11330 | loss: 1.503057517
step: 11340 | loss: 1.498795087
step: 11350 | loss: 1.494532755
step: 11360 | loss: 1.490270522
step: 11370 | loss: 1.486008388
step: 11380 | loss: 1.481746353
step: 11390 | loss: 1.477484416
step: 11400 | loss: 1.473222579
step: 11410 | loss: 1.468960841
step: 11420 | loss: 1.464699202
step: 11430 | loss: 1.460437662
step: 11440 | loss: 1.456176223
step: 11450 | loss: 1.451914883
step: 11460 | loss: 1.447653643
step: 11470 | loss: 1.443392503
step: 11480 | loss: 1.439131463
step: 11490 | loss: 1.434870524
step: 11500 | loss: 1.430609686
step: 11510 | loss: 1.426348949
step: 11520 | loss: 1.422088313
step: 11530 | loss: 1.417827779
step: 11540 | loss: 1.413567346
step: 11550 | loss: 1.409307015
step: 11560 | loss: 1.405046787
step: 11570 | loss: 1.400786661
step: 11580 | loss: 1.396526638
step: 11590 | loss: 1.392266718
step: 11600 | loss: 1.388006901
step: 11610 | loss: 1.383747189
step: 11620 | loss: 1.379487580
step: 11630 | loss: 1.375228076
step: 11640 | loss: 1.370968677
step: 11650 | loss: 1.366709383
step: 11660 | loss: 1.362450194
step: 11670 | loss: 1.358191111
step: 11680 | loss: 1.353932135
step: 11690 | loss: 1.349673265
step: 11700 | loss: 1.345414502
step: 11710 | loss: 1.341155847
step: 11720 | loss: 1.336897300
step: 11730 | loss: 1.332638861
step: 11740 | loss: 1.328380531
step: 11750 | loss: 1.324122311
step: 11760 | loss: 1.319864200
step: 11770 | loss: 1.315606199
step: 11780 | loss: 1.311348309
step: 11790 | loss: 1.307090531
step: 11800 | loss: 1.302832864
step: 11810 | loss: 1.298575309
step: 11820 | loss: 1.294317867
step: 11830 | loss: 1.290060538
step: 11840 | loss: 1.285803323
step: 11850 | loss: 1.281546223
step: 11860 | loss: 1.277289238
step: 11870 | loss: 1.273032368
step: 11880 | loss: 1.268775614
step: 11890 | loss: 1.264518977
step: 11900 | loss: 1.260262458
step: 11910 | loss: 1.256006057
step: 11920 | loss: 1.251749774
step: 11930 | loss: 1.247493611
step: 11940 | loss: 1.243237567
step: 11950 | loss: 1.238981645
step: 11960 | loss: 1.234725843
step: 11970 | loss: 1.230470164
step: 11980 | loss: 1.226214607
step: 11990 | loss: 1.221959174
step: 12000 | loss: 1.217703866
step: 12010 | loss: 1.213448682
step: 12020 | loss: 1.209193624
step: 12030 | loss: 1.204938692
step: 12040 | loss: 1.200683888
step: 12050 | loss: 1.196429212
step: 12060 | loss: 1.192174665
step: 12070 | loss: 1.187920247
step: 12080 | loss: 1.183665960
step: 12090 | loss: 1.179411805
step: 12100 | loss: 1.175157782
step: 12110 | loss: 1.170903892
step: 12120 | loss: 1.166650137
step: 12130 | loss: 1.162396516
step: 12140 | loss: 1.158143031
step: 12150 | loss: 1.153889683
step: 12160 | loss: 1.149636474
step: 12170 | loss: 1.145383403
step: 12180 | loss: 1.141130471
step: 12190 | loss: 1.136877681
step: 12200 | loss: 1.132625032
step: 12210 | loss: 1.128372527
step: 12220 | loss: 1.124120165
step: 12230 | loss: 1.119867949
step: 12240 | loss: 1.115615878
step: 12250 | loss: 1.111363955
step: 12260 | loss: 1.107112180
step: 12270 | loss: 1.102860554
step: 12280 | loss: 1.098609080
step: 12290 | loss: 1.094357757
step: 12300 | loss: 1.090106587
step: 12310 | loss: 1.085855571
step: 12320 | loss: 1.081604711
step: 12330 | loss: 1.077354007
step: 12340 | loss: 1.073103462
step: 12350 | loss: 1.068853075
step: 12360 | loss: 1.064602850
step: 12370 | loss: 1.060352786
step: 12380 | loss: 1.056102885
step: 12390 | loss: 1.051853149
step: 12400 | loss: 1.047603579
step: 12410 | loss: 1.043354177
step: 12420 | loss: 1.039104943
step: 12430 | loss: 1.034855880
step: 12440 | loss: 1.030606989
step: 12450 | loss: 1.026358271
step: 12460 | loss: 1.022109727
step: 12470 | loss: 1.017861360
step: 12480 | loss: 1.013613172
step: 12490 | loss: 1.009365162
step: 12500 | loss: 1.005117334
step: 12510 | loss: 1.000869689
step: 12520 | loss: 0.996622228
step: 12530 | loss: 0.992374953
step: 12540 | loss: 0.988127866
step: 12550 | loss: 0.983880969
step: 12560 | loss: 0.979634264
step: 12570 | loss: 0.975387752
step: 12580 | loss: 0.971141434
step: 12590 | loss: 0.966895314
step: 12600 | loss: 0.962649393
step: 12610 | loss: 0.958403672
step: 12620 | loss: 0.954158154
step: 12630 | loss: 0.949912841
step: 12640 | loss: 0.945667735
step: 12650 | loss: 0.941422837
step: 12660 | loss: 0.937178150
step: 12670 | loss: 0.932933676
step: 12680 | loss: 0.928689417
step: 12690 | loss: 0.924445376
step: 12700 | loss: 0.920201553
step: 12710 | loss: 0.915957953
step: 12720 | loss: 0.911714577
step: 12730 | loss: 0.907471426
step: 12740 | loss: 0.903228505
step: 12750 | loss: 0.898985815
step: 12760 | loss: 0.894743358
step: 12770 | loss: 0.890501137
step: 12780 | loss: 0.886259154
step: 12790 | loss: 0.882017413
step: 12800 | loss: 0.877775915
step: 12810 | loss: 0.873534664
step: 12820 | loss: 0.869293661
step: 12830 | loss: 0.865052910
step: 12840 | loss: 0.860812413
step: 12850 | loss: 0.856572174
step: 12860 | loss: 0.852332194
step: 12870 | loss: 0.848092478
step: 12880 | loss: 0.843853027
step: 12890 | loss: 0.839613845
step: 12900 | loss: 0.835374936
step: 12910 | loss: 0.831136301
step: 12920 | loss: 0.826897944
step: 12930 | loss: 0.822659869
step: 12940 | loss: 0.818422079
step: 12950 | loss: 0.814184576
step: 12960 | loss: 0.809947365
step: 12970 | loss: 0.805710448
step: 12980 | loss: 0.801473830
step: 12990 | loss: 0.797237514
step: 13000 | loss: 0.793001502
step: 13010 | loss: 0.788765800
step: 13020 | loss: 0.784530411
step: 13030 | loss: 0.780295338
step: 13040 | loss: 0.776060586
step: 13050 | loss: 0.771826157
step: 13060 | loss: 0.767592058
step: 13070 | loss: 0.763358290
step: 13080 | loss: 0.759124859
step: 13090 | loss: 0.754891769
step: 13100 | loss: 0.750659024
step: 13110 | loss: 0.746426628
step: 13120 | loss: 0.742194586
step: 13130 | loss: 0.737962902
step: 13140 | loss: 0.733731581
step: 13150 | loss: 0.729500627
step: 13160 | loss: 0.725270046
step: 13170 | loss: 0.721039842
step: 13180 | loss: 0.716810021
step: 13190 | loss: 0.712580586
step: 13200 | loss: 0.708351544
step: 13210 | loss: 0.704122899
step: 13220 | loss: 0.699894657
step: 13230 | loss: 0.695666823
step: 13240 | loss: 0.691439403
step: 13250 | loss: 0.687212402
step: 13260 | loss: 0.682985826
step: 13270 | loss: 0.678759681
step: 13280 | loss: 0.674533973
step: 13290 | loss: 0.670308708
step: 13300 | loss: 0.666083892
step: 13310 | loss: 0.661859531
step: 13320 | loss: 0.657635632
step: 13330 | loss: 0.653412201
step: 13340 | loss: 0.649189245
step: 13350 | loss: 0.644966771
step: 13360 | loss: 0.640744786
step: 13370 | loss: 0.636523297
step: 13380 | loss: 0.632302310
step: 13390 | loss: 0.628081834
step: 13400 | loss: 0.623861875
step: 13410 | loss: 0.619642442
step: 13420 | loss: 0.615423543
step: 13430 | loss: 0.611205184
step: 13440 | loss: 0.606987376
step: 13450 | loss: 0.602770124
step: 13460 | loss: 0.598553439
step: 13470 | loss: 0.594337329
step: 13480 | loss: 0.590121802
step: 13490 | loss: 0.585906868
step: 13500 | loss: 0.581692536
step: 13510 | loss: 0.577478815
step: 13520 | loss: 0.573265715
step: 13530 | loss: 0.569053246
step: 13540 | loss: 0.564841417
step: 13550 | loss: 0.560630239
step: 13560 | loss: 0.556419723
step: 13570 | loss: 0.552209879
step: 13580 | loss: 0.548000717
step: 13590 | loss: 0.543792250
step: 13600 | loss: 0.539584489
step: 13610 | loss: 0.535377444
step: 13620 | loss: 0.531171129
step: 13630 | loss: 0.526965555
step: 13640 | loss: 0.522760736
step: 13650 | loss: 0.518556682
step: 13660 | loss: 0.514353409
step: 13670 | loss: 0.510150928
step: 13680 | loss: 0.505949254
step: 13690 | loss: 0.501748401
step: 13700 | loss: 0.497548383
step: 13710 | loss: 0.493349215
step: 13720 | loss: 0.489150911
step: 13730 | loss: 0.484953487
step: 13740 | loss: 0.480756960
step: 13750 | loss: 0.476561344
step: 13760 | loss: 0.472366656
step: 13770 | loss: 0.468172915
step: 13780 | loss: 0.463980135
step: 13790 | loss: 0.459788337
step: 13800 | loss: 0.455597537
step: 13810 | loss: 0.451407754
step: 13820 | loss: 0.447219008
step: 13830 | loss: 0.443031318
step: 13840 | loss: 0.438844705
step: 13850 | loss: 0.434659188
step: 13860 | loss: 0.430474790
step: 13870 | loss: 0.426291532
step: 13880 | loss: 0.422109436
step: 13890 | loss: 0.417928525
step: 13900 | loss: 0.413748823
step: 13910 | loss: 0.409570354
step: 13920 | loss: 0.405393142
step: 13930 | loss: 0.401217214
step: 13940 | loss: 0.397042595
step: 13950 | loss: 0.392869312
step: 13960 | loss: 0.388697393
step: 13970 | loss: 0.384526866
step: 13980 | loss: 0.380357761
step: 13990 | loss: 0.376190108
step: 14000 | loss: 0.372023937
step: 14010 | loss: 0.367859281
step: 14020 | loss: 0.363696171
step: 14030 | loss: 0.359534643
step: 14040 | loss: 0.355374729
step: 14050 | loss: 0.351216467
step: 14060 | loss: 0.347059893
step: 14070 | loss: 0.342905044
step: 14080 | loss: 0.338751960
step: 14090 | loss: 0.334600681
step: 14100 | loss: 0.330451248
step: 14110 | loss: 0.326303704
step: 14120 | loss: 0.322158093
step: 14130 | loss: 0.318014461
step: 14140 | loss: 0.313872854
step: 14150 | loss: 0.309733321
step: 14160 | loss: 0.305595911
step: 14170 | loss: 0.301460676
step: 14180 | loss: 0.297327669
step: 14190 | loss: 0.293196946
step: 14200 | loss: 0.289068562
step: 14210 | loss: 0.284942577
step: 14220 | loss: 0.280819052
step: 14230 | loss: 0.276698048
step: 14240 | loss: 0.272579631
step: 14250 | loss: 0.268463868
step: 14260 | loss: 0.264350828
step: 14270 | loss: 0.260240583
step: 14280 | loss: 0.256133208
step: 14290 | loss: 0.252028779
step: 14300 | loss: 0.247927376
step: 14310 | loss: 0.243829082
step: 14320 | loss: 0.239733983
step: 14330 | loss: 0.235642167
step: 14340 | loss: 0.231553727
step: 14350 | loss: 0.227468758
step: 14360 | loss: 0.223387359
step: 14370 | loss: 0.219309634
step: 14380 | loss: 0.215235689
step: 14390 | loss: 0.211165635
step: 14400 | loss: 0.207099588
step: 14410 | loss: 0.203037668
step: 14420 | loss: 0.198979999
step: 14430 | loss: 0.194926712
step: 14440 | loss: 0.190877940
step: 14450 | loss: 0.186833824
step: 14460 | loss: 0.182794511
step: 14470 | loss: 0.178760152
step: 14480 | loss: 0.174730906
step: 14490 | loss: 0.170706938
step: 14500 | loss: 0.166688420
step: 14510 | loss: 0.162675532
step: 14520 | loss: 0.158668459
step: 14530 | loss: 0.154667398
step: 14540 | loss: 0.150672552
step: 14550 | loss: 0.146684133
step: 14560 | loss: 0.142702363
step: 14570 | loss: 0.138727473
step: 14580 | loss: 0.134759704
step: 14590 | loss: 0.130799310
step: 14600 | loss: 0.126846553
step: 14610 | loss: 0.122901708
step: 14620 | loss: 0.118965064
step: 14630 | loss: 0.115036920
step: 14640 | loss: 0.111117591
step: 14650 | loss: 0.107207403
step: 14660 | loss: 0.103306700
step: 14670 | loss: 0.099415838
step: 14680 | loss: 0.095535190
step: 14690 | loss: 0.091665144
step: 14700 | loss: 0.087806106
step: 14710 | loss: 0.083958498
step: 14720 | loss: 0.080122758
step: 14730 | loss: 0.076299342
step: 14740 | loss: 0.072488723
step: 14750 | loss: 0.068691389
step: 14760 | loss: 0.064907844
step: 14770 | loss: 0.061138608
step: 14780 | loss: 0.057384213
step: 14790 | loss: 0.053645199
step: 14800 | loss: 0.049922115
step: 14810 | loss: 0.046215511
step: 14820 | loss: 0.042525931
step: 14830 | loss: 0.038853907
step: 14840 | loss: 0.035199948
step: 14850 | loss: 0.031564521
step: 14860 | loss: 0.027948034
step: 14870 | loss: 0.024350808
step: 14880 | loss: 0.020773948
step: 14890 | loss: 0.017215555
step: 14900 | loss: 0.013675947
step: 14910 | loss: 0.010155692
step: 14920 | loss: 0.006652836
step: 14930 | loss: 0.003173990
- final loss: 0.000748
- (cd _build/default/examples/opt && ./pair.exe)
- 
step: 0 | loss: 4.540126293
step: 10 | loss: 4.533550418
step: 20 | loss: 4.526247664
step: 30 | loss: 4.518949342
step: 40 | loss: 4.511655778
step: 50 | loss: 4.504367164
step: 60 | loss: 4.497083601
step: 70 | loss: 4.489805138
step: 80 | loss: 4.482531795
step: 90 | loss: 4.475263583
step: 100 | loss: 4.468000507
step: 110 | loss: 4.460742568
step: 120 | loss: 4.453489769
step: 130 | loss: 4.446242109
step: 140 | loss: 4.438999591
step: 150 | loss: 4.431762213
step: 160 | loss: 4.424529978
step: 170 | loss: 4.417302885
step: 180 | loss: 4.410080936
step: 190 | loss: 4.402864130
step: 200 | loss: 4.395652468
step: 210 | loss: 4.388445951
step: 220 | loss: 4.381244579
step: 230 | loss: 4.374048352
step: 240 | loss: 4.366857271
step: 250 | loss: 4.359671335
step: 260 | loss: 4.352490546
step: 270 | loss: 4.345314902
step: 280 | loss: 4.338144405
step: 290 | loss: 4.330979055
step: 300 | loss: 4.323818851
step: 310 | loss: 4.316663793
step: 320 | loss: 4.309513881
step: 330 | loss: 4.302369116
step: 340 | loss: 4.295229497
step: 350 | loss: 4.288095023
step: 360 | loss: 4.280965695
step: 370 | loss: 4.273841512
step: 380 | loss: 4.266722473
step: 390 | loss: 4.259608579
step: 400 | loss: 4.252499828
step: 410 | loss: 4.245396221
step: 420 | loss: 4.238297755
step: 430 | loss: 4.231204432
step: 440 | loss: 4.224116250
step: 450 | loss: 4.217033208
step: 460 | loss: 4.209955305
step: 470 | loss: 4.202882540
step: 480 | loss: 4.195814913
step: 490 | loss: 4.188752421
step: 500 | loss: 4.181695065
step: 510 | loss: 4.174642843
step: 520 | loss: 4.167595753
step: 530 | loss: 4.160553795
step: 540 | loss: 4.153516966
step: 550 | loss: 4.146485265
step: 560 | loss: 4.139458692
step: 570 | loss: 4.132437243
step: 580 | loss: 4.125420917
step: 590 | loss: 4.118409714
step: 600 | loss: 4.111403629
step: 610 | loss: 4.104402663
step: 620 | loss: 4.097406812
step: 630 | loss: 4.090416075
step: 640 | loss: 4.083430450
step: 650 | loss: 4.076449934
step: 660 | loss: 4.069474524
step: 670 | loss: 4.062504219
step: 680 | loss: 4.055539017
step: 690 | loss: 4.048578914
step: 700 | loss: 4.041623907
step: 710 | loss: 4.034673995
step: 720 | loss: 4.027729175
step: 730 | loss: 4.020789442
step: 740 | loss: 4.013854796
step: 750 | loss: 4.006925232
step: 760 | loss: 4.000000747
step: 770 | loss: 3.993081338
step: 780 | loss: 3.986167002
step: 790 | loss: 3.979257736
step: 800 | loss: 3.972353536
step: 810 | loss: 3.965454399
step: 820 | loss: 3.958560320
step: 830 | loss: 3.951671297
step: 840 | loss: 3.944787325
step: 850 | loss: 3.937908400
step: 860 | loss: 3.931034520
step: 870 | loss: 3.924165679
step: 880 | loss: 3.917301873
step: 890 | loss: 3.910443098
step: 900 | loss: 3.903589351
step: 910 | loss: 3.896740626
step: 920 | loss: 3.889896919
step: 930 | loss: 3.883058226
step: 940 | loss: 3.876224542
step: 950 | loss: 3.869395863
step: 960 | loss: 3.862572183
step: 970 | loss: 3.855753497
step: 980 | loss: 3.848939802
step: 990 | loss: 3.842131091
step: 1000 | loss: 3.835327360
step: 1010 | loss: 3.828528603
step: 1020 | loss: 3.821734816
step: 1030 | loss: 3.814945992
step: 1040 | loss: 3.808162127
step: 1050 | loss: 3.801383215
step: 1060 | loss: 3.794609251
step: 1070 | loss: 3.787840229
step: 1080 | loss: 3.781076143
step: 1090 | loss: 3.774316987
step: 1100 | loss: 3.767562756
step: 1110 | loss: 3.760813444
step: 1120 | loss: 3.754069045
step: 1130 | loss: 3.747329552
step: 1140 | loss: 3.740594961
step: 1150 | loss: 3.733865264
step: 1160 | loss: 3.727140455
step: 1170 | loss: 3.720420529
step: 1180 | loss: 3.713705478
step: 1190 | loss: 3.706995297
step: 1200 | loss: 3.700289979
step: 1210 | loss: 3.693589518
step: 1220 | loss: 3.686893907
step: 1230 | loss: 3.680203140
step: 1240 | loss: 3.673517210
step: 1250 | loss: 3.666836110
step: 1260 | loss: 3.660159834
step: 1270 | loss: 3.653488374
step: 1280 | loss: 3.646821726
step: 1290 | loss: 3.640159880
step: 1300 | loss: 3.633502832
step: 1310 | loss: 3.626850573
step: 1320 | loss: 3.620203098
step: 1330 | loss: 3.613560399
step: 1340 | loss: 3.606922469
step: 1350 | loss: 3.600289301
step: 1360 | loss: 3.593660890
step: 1370 | loss: 3.587037227
step: 1380 | loss: 3.580418306
step: 1390 | loss: 3.573804119
step: 1400 | loss: 3.567194661
step: 1410 | loss: 3.560589924
step: 1420 | loss: 3.553989901
step: 1430 | loss: 3.547394586
step: 1440 | loss: 3.540803971
step: 1450 | loss: 3.534218049
step: 1460 | loss: 3.527636815
step: 1470 | loss: 3.521060261
step: 1480 | loss: 3.514488380
step: 1490 | loss: 3.507921166
step: 1500 | loss: 3.501358612
step: 1510 | loss: 3.494800711
step: 1520 | loss: 3.488247458
step: 1530 | loss: 3.481698844
step: 1540 | loss: 3.475154864
step: 1550 | loss: 3.468615512
step: 1560 | loss: 3.462080781
step: 1570 | loss: 3.455550665
step: 1580 | loss: 3.449025157
step: 1590 | loss: 3.442504252
step: 1600 | loss: 3.435987944
step: 1610 | loss: 3.429476226
step: 1620 | loss: 3.422969092
step: 1630 | loss: 3.416466538
step: 1640 | loss: 3.409968556
step: 1650 | loss: 3.403475142
step: 1660 | loss: 3.396986291
step: 1670 | loss: 3.390501996
step: 1680 | loss: 3.384022252
step: 1690 | loss: 3.377547055
step: 1700 | loss: 3.371076399
step: 1710 | loss: 3.364610280
step: 1720 | loss: 3.358148692
step: 1730 | loss: 3.351691631
step: 1740 | loss: 3.345239093
step: 1750 | loss: 3.338791073
step: 1760 | loss: 3.332347567
step: 1770 | loss: 3.325908571
step: 1780 | loss: 3.319474080
step: 1790 | loss: 3.313044092
step: 1800 | loss: 3.306618603
step: 1810 | loss: 3.300197609
step: 1820 | loss: 3.293781106
step: 1830 | loss: 3.287369092
step: 1840 | loss: 3.280961565
step: 1850 | loss: 3.274558520
step: 1860 | loss: 3.268159955
step: 1870 | loss: 3.261765869
step: 1880 | loss: 3.255376258
step: 1890 | loss: 3.248991122
step: 1900 | loss: 3.242610457
step: 1910 | loss: 3.236234262
step: 1920 | loss: 3.229862536
step: 1930 | loss: 3.223495277
step: 1940 | loss: 3.217132485
step: 1950 | loss: 3.210774158
step: 1960 | loss: 3.204420296
step: 1970 | loss: 3.198070898
step: 1980 | loss: 3.191725964
step: 1990 | loss: 3.185385493
step: 2000 | loss: 3.179049487
step: 2010 | loss: 3.172717945
step: 2020 | loss: 3.166390867
step: 2030 | loss: 3.160068255
step: 2040 | loss: 3.153750109
step: 2050 | loss: 3.147436431
step: 2060 | loss: 3.141127221
step: 2070 | loss: 3.134822482
step: 2080 | loss: 3.128522215
step: 2090 | loss: 3.122226422
step: 2100 | loss: 3.115935105
step: 2110 | loss: 3.109648266
step: 2120 | loss: 3.103365909
step: 2130 | loss: 3.097088035
step: 2140 | loss: 3.090814649
step: 2150 | loss: 3.084545752
step: 2160 | loss: 3.078281348
step: 2170 | loss: 3.072021442
step: 2180 | loss: 3.065766036
step: 2190 | loss: 3.059515135
step: 2200 | loss: 3.053268742
step: 2210 | loss: 3.047026863
step: 2220 | loss: 3.040789501
step: 2230 | loss: 3.034556661
step: 2240 | loss: 3.028328349
step: 2250 | loss: 3.022104569
step: 2260 | loss: 3.015885327
step: 2270 | loss: 3.009670627
step: 2280 | loss: 3.003460476
step: 2290 | loss: 2.997254879
step: 2300 | loss: 2.991053843
step: 2310 | loss: 2.984857373
step: 2320 | loss: 2.978665475
step: 2330 | loss: 2.972478156
step: 2340 | loss: 2.966295423
step: 2350 | loss: 2.960117282
step: 2360 | loss: 2.953943740
step: 2370 | loss: 2.947774805
step: 2380 | loss: 2.941610482
step: 2390 | loss: 2.935450780
step: 2400 | loss: 2.929295705
step: 2410 | loss: 2.923145266
step: 2420 | loss: 2.916999470
step: 2430 | loss: 2.910858324
step: 2440 | loss: 2.904721837
step: 2450 | loss: 2.898590017
step: 2460 | loss: 2.892462871
step: 2470 | loss: 2.886340408
step: 2480 | loss: 2.880222636
step: 2490 | loss: 2.874109563
step: 2500 | loss: 2.868001198
step: 2510 | loss: 2.861897549
step: 2520 | loss: 2.855798625
step: 2530 | loss: 2.849704434
step: 2540 | loss: 2.843614986
step: 2550 | loss: 2.837530289
step: 2560 | loss: 2.831450352
step: 2570 | loss: 2.825375184
step: 2580 | loss: 2.819304793
step: 2590 | loss: 2.813239190
step: 2600 | loss: 2.807178382
step: 2610 | loss: 2.801122379
step: 2620 | loss: 2.795071190
step: 2630 | loss: 2.789024824
step: 2640 | loss: 2.782983291
step: 2650 | loss: 2.776946599
step: 2660 | loss: 2.770914757
step: 2670 | loss: 2.764887776
step: 2680 | loss: 2.758865664
step: 2690 | loss: 2.752848430
step: 2700 | loss: 2.746836084
step: 2710 | loss: 2.740828635
step: 2720 | loss: 2.734826091
step: 2730 | loss: 2.728828463
step: 2740 | loss: 2.722835759
step: 2750 | loss: 2.716847988
step: 2760 | loss: 2.710865161
step: 2770 | loss: 2.704887284
step: 2780 | loss: 2.698914369
step: 2790 | loss: 2.692946423
step: 2800 | loss: 2.686983456
step: 2810 | loss: 2.681025477
step: 2820 | loss: 2.675072494
step: 2830 | loss: 2.669124517
step: 2840 | loss: 2.663181554
step: 2850 | loss: 2.657243613
step: 2860 | loss: 2.651310704
step: 2870 | loss: 2.645382835
step: 2880 | loss: 2.639460015
step: 2890 | loss: 2.633542252
step: 2900 | loss: 2.627629554
step: 2910 | loss: 2.621721930
step: 2920 | loss: 2.615819388
step: 2930 | loss: 2.609921935
step: 2940 | loss: 2.604029581
step: 2950 | loss: 2.598142333
step: 2960 | loss: 2.592260198
step: 2970 | loss: 2.586383185
step: 2980 | loss: 2.580511301
step: 2990 | loss: 2.574644553
step: 3000 | loss: 2.568782950
step: 3010 | loss: 2.562926497
step: 3020 | loss: 2.557075204
step: 3030 | loss: 2.551229076
step: 3040 | loss: 2.545388120
step: 3050 | loss: 2.539552343
step: 3060 | loss: 2.533721753
step: 3070 | loss: 2.527896355
step: 3080 | loss: 2.522076156
step: 3090 | loss: 2.516261162
step: 3100 | loss: 2.510451380
step: 3110 | loss: 2.504646815
step: 3120 | loss: 2.498847473
step: 3130 | loss: 2.493053360
step: 3140 | loss: 2.487264482
step: 3150 | loss: 2.481480843
step: 3160 | loss: 2.475702450
step: 3170 | loss: 2.469929307
step: 3180 | loss: 2.464161419
step: 3190 | loss: 2.458398791
step: 3200 | loss: 2.452641427
step: 3210 | loss: 2.446889333
step: 3220 | loss: 2.441142511
step: 3230 | loss: 2.435400967
step: 3240 | loss: 2.429664704
step: 3250 | loss: 2.423933726
step: 3260 | loss: 2.418208036
step: 3270 | loss: 2.412487638
step: 3280 | loss: 2.406772535
step: 3290 | loss: 2.401062729
step: 3300 | loss: 2.395358225
step: 3310 | loss: 2.389659023
step: 3320 | loss: 2.383965127
step: 3330 | loss: 2.378276539
step: 3340 | loss: 2.372593260
step: 3350 | loss: 2.366915293
step: 3360 | loss: 2.361242639
step: 3370 | loss: 2.355575300
step: 3380 | loss: 2.349913275
step: 3390 | loss: 2.344256567
step: 3400 | loss: 2.338605177
step: 3410 | loss: 2.332959103
step: 3420 | loss: 2.327318348
step: 3430 | loss: 2.321682910
step: 3440 | loss: 2.316052790
step: 3450 | loss: 2.310427987
step: 3460 | loss: 2.304808501
step: 3470 | loss: 2.299194330
step: 3480 | loss: 2.293585473
step: 3490 | loss: 2.287981930
step: 3500 | loss: 2.282383698
step: 3510 | loss: 2.276790775
step: 3520 | loss: 2.271203160
step: 3530 | loss: 2.265620850
step: 3540 | loss: 2.260043843
step: 3550 | loss: 2.254472135
step: 3560 | loss: 2.248905724
step: 3570 | loss: 2.243344605
step: 3580 | loss: 2.237788776
step: 3590 | loss: 2.232238233
step: 3600 | loss: 2.226692972
step: 3610 | loss: 2.221152987
step: 3620 | loss: 2.215618275
step: 3630 | loss: 2.210088830
step: 3640 | loss: 2.204564648
step: 3650 | loss: 2.199045722
step: 3660 | loss: 2.193532048
step: 3670 | loss: 2.188023619
step: 3680 | loss: 2.182520428
step: 3690 | loss: 2.177022470
step: 3700 | loss: 2.171529738
step: 3710 | loss: 2.166042224
step: 3720 | loss: 2.160559921
step: 3730 | loss: 2.155082821
step: 3740 | loss: 2.149610918
step: 3750 | loss: 2.144144201
step: 3760 | loss: 2.138682664
step: 3770 | loss: 2.133226297
step: 3780 | loss: 2.127775091
step: 3790 | loss: 2.122329037
step: 3800 | loss: 2.116888126
step: 3810 | loss: 2.111452347
step: 3820 | loss: 2.106021691
step: 3830 | loss: 2.100596147
step: 3840 | loss: 2.095175705
step: 3850 | loss: 2.089760353
step: 3860 | loss: 2.084350081
step: 3870 | loss: 2.078944876
step: 3880 | loss: 2.073544728
step: 3890 | loss: 2.068149624
step: 3900 | loss: 2.062759552
step: 3910 | loss: 2.057374500
step: 3920 | loss: 2.051994454
step: 3930 | loss: 2.046619401
step: 3940 | loss: 2.041249329
step: 3950 | loss: 2.035884223
step: 3960 | loss: 2.030524070
step: 3970 | loss: 2.025168855
step: 3980 | loss: 2.019818565
step: 3990 | loss: 2.014473184
step: 4000 | loss: 2.009132698
step: 4010 | loss: 2.003797092
step: 4020 | loss: 1.998466349
step: 4030 | loss: 1.993140456
step: 4040 | loss: 1.987819394
step: 4050 | loss: 1.982503150
step: 4060 | loss: 1.977191705
step: 4070 | loss: 1.971885045
step: 4080 | loss: 1.966583151
step: 4090 | loss: 1.961286007
step: 4100 | loss: 1.955993595
step: 4110 | loss: 1.950705899
step: 4120 | loss: 1.945422900
step: 4130 | loss: 1.940144580
step: 4140 | loss: 1.934870923
step: 4150 | loss: 1.929601908
step: 4160 | loss: 1.924337518
step: 4170 | loss: 1.919077734
step: 4180 | loss: 1.913822537
step: 4190 | loss: 1.908571909
step: 4200 | loss: 1.903325829
step: 4210 | loss: 1.898084279
step: 4220 | loss: 1.892847239
step: 4230 | loss: 1.887614689
step: 4240 | loss: 1.882386609
step: 4250 | loss: 1.877162980
step: 4260 | loss: 1.871943782
step: 4270 | loss: 1.866728993
step: 4280 | loss: 1.861518594
step: 4290 | loss: 1.856312564
step: 4300 | loss: 1.851110882
step: 4310 | loss: 1.845913528
step: 4320 | loss: 1.840720480
step: 4330 | loss: 1.835531719
step: 4340 | loss: 1.830347222
step: 4350 | loss: 1.825166969
step: 4360 | loss: 1.819990938
step: 4370 | loss: 1.814819108
step: 4380 | loss: 1.809651459
step: 4390 | loss: 1.804487967
step: 4400 | loss: 1.799328613
step: 4410 | loss: 1.794173374
step: 4420 | loss: 1.789022229
step: 4430 | loss: 1.783875157
step: 4440 | loss: 1.778732135
step: 4450 | loss: 1.773593143
step: 4460 | loss: 1.768458159
step: 4470 | loss: 1.763327161
step: 4480 | loss: 1.758200128
step: 4490 | loss: 1.753077039
step: 4500 | loss: 1.747957871
step: 4510 | loss: 1.742842604
step: 4520 | loss: 1.737731215
step: 4530 | loss: 1.732623685
step: 4540 | loss: 1.727519992
step: 4550 | loss: 1.722420113
step: 4560 | loss: 1.717324030
step: 4570 | loss: 1.712231719
step: 4580 | loss: 1.707143161
step: 4590 | loss: 1.702058335
step: 4600 | loss: 1.696977220
step: 4610 | loss: 1.691899796
step: 4620 | loss: 1.686826042
step: 4630 | loss: 1.681755938
step: 4640 | loss: 1.676689464
step: 4650 | loss: 1.671626600
step: 4660 | loss: 1.666567326
step: 4670 | loss: 1.661511623
step: 4680 | loss: 1.656459472
step: 4690 | loss: 1.651410852
step: 4700 | loss: 1.646365746
step: 4710 | loss: 1.641324134
step: 4720 | loss: 1.636285997
step: 4730 | loss: 1.631251319
step: 4740 | loss: 1.626220079
step: 4750 | loss: 1.621192261
step: 4760 | loss: 1.616167847
step: 4770 | loss: 1.611146820
step: 4780 | loss: 1.606129162
step: 4790 | loss: 1.601114856
step: 4800 | loss: 1.596103887
step: 4810 | loss: 1.591096238
step: 4820 | loss: 1.586091892
step: 4830 | loss: 1.581090835
step: 4840 | loss: 1.576093051
step: 4850 | loss: 1.571098524
step: 4860 | loss: 1.566107241
step: 4870 | loss: 1.561119187
step: 4880 | loss: 1.556134347
step: 4890 | loss: 1.551152708
step: 4900 | loss: 1.546174257
step: 4910 | loss: 1.541198980
step: 4920 | loss: 1.536226866
step: 4930 | loss: 1.531257901
step: 4940 | loss: 1.526292074
step: 4950 | loss: 1.521329372
step: 4960 | loss: 1.516369786
step: 4970 | loss: 1.511413304
step: 4980 | loss: 1.506459916
step: 4990 | loss: 1.501509611
step: 5000 | loss: 1.496562380
step: 5010 | loss: 1.491618215
step: 5020 | loss: 1.486677105
step: 5030 | loss: 1.481739042
step: 5040 | loss: 1.476804019
step: 5050 | loss: 1.471872028
step: 5060 | loss: 1.466943062
step: 5070 | loss: 1.462017113
step: 5080 | loss: 1.457094176
step: 5090 | loss: 1.452174245
step: 5100 | loss: 1.447257313
step: 5110 | loss: 1.442343377
step: 5120 | loss: 1.437432431
step: 5130 | loss: 1.432524471
step: 5140 | loss: 1.427619493
step: 5150 | loss: 1.422717494
step: 5160 | loss: 1.417818471
step: 5170 | loss: 1.412922422
step: 5180 | loss: 1.408029344
step: 5190 | loss: 1.403139236
step: 5200 | loss: 1.398252096
step: 5210 | loss: 1.393367924
step: 5220 | loss: 1.388486720
step: 5230 | loss: 1.383608484
step: 5240 | loss: 1.378733215
step: 5250 | loss: 1.373860916
step: 5260 | loss: 1.368991588
step: 5270 | loss: 1.364125232
step: 5280 | loss: 1.359261850
step: 5290 | loss: 1.354401447
step: 5300 | loss: 1.349544023
step: 5310 | loss: 1.344689584
step: 5320 | loss: 1.339838134
step: 5330 | loss: 1.334989675
step: 5340 | loss: 1.330144215
step: 5350 | loss: 1.325301757
step: 5360 | loss: 1.320462307
step: 5370 | loss: 1.315625872
step: 5380 | loss: 1.310792458
step: 5390 | loss: 1.305962071
step: 5400 | loss: 1.301134720
step: 5410 | loss: 1.296310412
step: 5420 | loss: 1.291489155
step: 5430 | loss: 1.286670958
step: 5440 | loss: 1.281855829
step: 5450 | loss: 1.277043778
step: 5460 | loss: 1.272234815
step: 5470 | loss: 1.267428949
step: 5480 | loss: 1.262626191
step: 5490 | loss: 1.257826551
step: 5500 | loss: 1.253030042
step: 5510 | loss: 1.248236675
step: 5520 | loss: 1.243446460
step: 5530 | loss: 1.238659412
step: 5540 | loss: 1.233875542
step: 5550 | loss: 1.229094863
step: 5560 | loss: 1.224317389
step: 5570 | loss: 1.219543134
step: 5580 | loss: 1.214772110
step: 5590 | loss: 1.210004334
step: 5600 | loss: 1.205239818
step: 5610 | loss: 1.200478579
step: 5620 | loss: 1.195720632
step: 5630 | loss: 1.190965991
step: 5640 | loss: 1.186214674
step: 5650 | loss: 1.181466696
step: 5660 | loss: 1.176722074
step: 5670 | loss: 1.171980825
step: 5680 | loss: 1.167242966
step: 5690 | loss: 1.162508513
step: 5700 | loss: 1.157777486
step: 5710 | loss: 1.153049901
step: 5720 | loss: 1.148325777
step: 5730 | loss: 1.143605132
step: 5740 | loss: 1.138887986
step: 5750 | loss: 1.134174357
step: 5760 | loss: 1.129464264
step: 5770 | loss: 1.124757727
step: 5780 | loss: 1.120054766
step: 5790 | loss: 1.115355400
step: 5800 | loss: 1.110659650
step: 5810 | loss: 1.105967537
step: 5820 | loss: 1.101279080
step: 5830 | loss: 1.096594301
step: 5840 | loss: 1.091913220
step: 5850 | loss: 1.087235860
step: 5860 | loss: 1.082562241
step: 5870 | loss: 1.077892386
step: 5880 | loss: 1.073226315
step: 5890 | loss: 1.068564052
step: 5900 | loss: 1.063905619
step: 5910 | loss: 1.059251037
step: 5920 | loss: 1.054600329
step: 5930 | loss: 1.049953519
step: 5940 | loss: 1.045310629
step: 5950 | loss: 1.040671683
step: 5960 | loss: 1.036036702
step: 5970 | loss: 1.031405712
step: 5980 | loss: 1.026778736
step: 5990 | loss: 1.022155796
step: 6000 | loss: 1.017536917
step: 6010 | loss: 1.012922124
step: 6020 | loss: 1.008311439
step: 6030 | loss: 1.003704888
step: 6040 | loss: 0.999102494
step: 6050 | loss: 0.994504282
step: 6060 | loss: 0.989910277
step: 6070 | loss: 0.985320502
step: 6080 | loss: 0.980734984
step: 6090 | loss: 0.976153745
step: 6100 | loss: 0.971576813
step: 6110 | loss: 0.967004210
step: 6120 | loss: 0.962435963
step: 6130 | loss: 0.957872097
step: 6140 | loss: 0.953312636
step: 6150 | loss: 0.948757605
step: 6160 | loss: 0.944207031
step: 6170 | loss: 0.939660938
step: 6180 | loss: 0.935119351
step: 6190 | loss: 0.930582296
step: 6200 | loss: 0.926049798
step: 6210 | loss: 0.921521883
step: 6220 | loss: 0.916998575
step: 6230 | loss: 0.912479900
step: 6240 | loss: 0.907965884
step: 6250 | loss: 0.903456551
step: 6260 | loss: 0.898951926
step: 6270 | loss: 0.894452036
step: 6280 | loss: 0.889956905
step: 6290 | loss: 0.885466558
step: 6300 | loss: 0.880981020
step: 6310 | loss: 0.876500316
step: 6320 | loss: 0.872024471
step: 6330 | loss: 0.867553510
step: 6340 | loss: 0.863087457
step: 6350 | loss: 0.858626337
step: 6360 | loss: 0.854170173
step: 6370 | loss: 0.849718992
step: 6380 | loss: 0.845272815
step: 6390 | loss: 0.840831668
step: 6400 | loss: 0.836395574
step: 6410 | loss: 0.831964557
step: 6420 | loss: 0.827538639
step: 6430 | loss: 0.823117845
step: 6440 | loss: 0.818702197
step: 6450 | loss: 0.814291717
step: 6460 | loss: 0.809886428
step: 6470 | loss: 0.805486353
step: 6480 | loss: 0.801091513
step: 6490 | loss: 0.796701929
step: 6500 | loss: 0.792317624
step: 6510 | loss: 0.787938617
step: 6520 | loss: 0.783564930
step: 6530 | loss: 0.779196582
step: 6540 | loss: 0.774833594
step: 6550 | loss: 0.770475985
step: 6560 | loss: 0.766123775
step: 6570 | loss: 0.761776981
step: 6580 | loss: 0.757435622
step: 6590 | loss: 0.753099715
step: 6600 | loss: 0.748769279
step: 6610 | loss: 0.744444330
step: 6620 | loss: 0.740124884
step: 6630 | loss: 0.735810957
step: 6640 | loss: 0.731502564
step: 6650 | loss: 0.727199719
step: 6660 | loss: 0.722902438
step: 6670 | loss: 0.718610733
step: 6680 | loss: 0.714324617
step: 6690 | loss: 0.710044103
step: 6700 | loss: 0.705769202
step: 6710 | loss: 0.701499924
step: 6720 | loss: 0.697236281
step: 6730 | loss: 0.692978281
step: 6740 | loss: 0.688725933
step: 6750 | loss: 0.684479245
step: 6760 | loss: 0.680238224
step: 6770 | loss: 0.676002877
step: 6780 | loss: 0.671773209
step: 6790 | loss: 0.667549225
step: 6800 | loss: 0.663330929
step: 6810 | loss: 0.659118323
step: 6820 | loss: 0.654911410
step: 6830 | loss: 0.650710190
step: 6840 | loss: 0.646514664
step: 6850 | loss: 0.642324831
step: 6860 | loss: 0.638140690
step: 6870 | loss: 0.633962236
step: 6880 | loss: 0.629789468
step: 6890 | loss: 0.625622379
step: 6900 | loss: 0.621460963
step: 6910 | loss: 0.617305214
step: 6920 | loss: 0.613155124
step: 6930 | loss: 0.609010682
step: 6940 | loss: 0.604871879
step: 6950 | loss: 0.600738704
step: 6960 | loss: 0.596611143
step: 6970 | loss: 0.592489182
step: 6980 | loss: 0.588372806
step: 6990 | loss: 0.584262000
step: 7000 | loss: 0.580156744
step: 7010 | loss: 0.576057021
step: 7020 | loss: 0.571962811
step: 7030 | loss: 0.567874091
step: 7040 | loss: 0.563790840
step: 7050 | loss: 0.559713032
step: 7060 | loss: 0.555640644
step: 7070 | loss: 0.551573648
step: 7080 | loss: 0.547512017
step: 7090 | loss: 0.543455721
step: 7100 | loss: 0.539404730
step: 7110 | loss: 0.535359012
step: 7120 | loss: 0.531318534
step: 7130 | loss: 0.527283261
step: 7140 | loss: 0.523253158
step: 7150 | loss: 0.519228187
step: 7160 | loss: 0.515208310
step: 7170 | loss: 0.511193487
step: 7180 | loss: 0.507183678
step: 7190 | loss: 0.503178839
step: 7200 | loss: 0.499178927
step: 7210 | loss: 0.495183898
step: 7220 | loss: 0.491193705
step: 7230 | loss: 0.487208300
step: 7240 | loss: 0.483227636
step: 7250 | loss: 0.479251663
step: 7260 | loss: 0.475280329
step: 7270 | loss: 0.471313582
step: 7280 | loss: 0.467351370
step: 7290 | loss: 0.463393638
step: 7300 | loss: 0.459440331
step: 7310 | loss: 0.455491392
step: 7320 | loss: 0.451546765
step: 7330 | loss: 0.447606390
step: 7340 | loss: 0.443670209
step: 7350 | loss: 0.439738161
step: 7360 | loss: 0.435810187
step: 7370 | loss: 0.431886223
step: 7380 | loss: 0.427966209
step: 7390 | loss: 0.424050080
step: 7400 | loss: 0.420137773
step: 7410 | loss: 0.416229224
step: 7420 | loss: 0.412324368
step: 7430 | loss: 0.408423140
step: 7440 | loss: 0.404525473
step: 7450 | loss: 0.400631303
step: 7460 | loss: 0.396740563
step: 7470 | loss: 0.392853185
step: 7480 | loss: 0.388969104
step: 7490 | loss: 0.385088253
step: 7500 | loss: 0.381210564
step: 7510 | loss: 0.377335972
step: 7520 | loss: 0.373464408
step: 7530 | loss: 0.369595806
step: 7540 | loss: 0.365730100
step: 7550 | loss: 0.361867224
step: 7560 | loss: 0.358007112
step: 7570 | loss: 0.354149699
step: 7580 | loss: 0.350294918
step: 7590 | loss: 0.346442707
step: 7600 | loss: 0.342593001
step: 7610 | loss: 0.338745738
step: 7620 | loss: 0.334900853
step: 7630 | loss: 0.331058287
step: 7640 | loss: 0.327217978
step: 7650 | loss: 0.323379865
step: 7660 | loss: 0.319543891
step: 7670 | loss: 0.315709996
step: 7680 | loss: 0.311878125
step: 7690 | loss: 0.308048220
step: 7700 | loss: 0.304220228
step: 7710 | loss: 0.300394094
step: 7720 | loss: 0.296569766
step: 7730 | loss: 0.292747193
step: 7740 | loss: 0.288926325
step: 7750 | loss: 0.285107113
step: 7760 | loss: 0.281289511
step: 7770 | loss: 0.277473471
step: 7780 | loss: 0.273658950
step: 7790 | loss: 0.269845904
step: 7800 | loss: 0.266034291
step: 7810 | loss: 0.262224072
step: 7820 | loss: 0.258415206
step: 7830 | loss: 0.254607657
step: 7840 | loss: 0.250801388
step: 7850 | loss: 0.246996364
step: 7860 | loss: 0.243192551
step: 7870 | loss: 0.239389918
step: 7880 | loss: 0.235588434
step: 7890 | loss: 0.231788069
step: 7900 | loss: 0.227988795
step: 7910 | loss: 0.224190585
step: 7920 | loss: 0.220393414
step: 7930 | loss: 0.216597256
step: 7940 | loss: 0.212802089
step: 7950 | loss: 0.209007891
step: 7960 | loss: 0.205214640
step: 7970 | loss: 0.201422316
step: 7980 | loss: 0.197630900
step: 7990 | loss: 0.193840375
step: 8000 | loss: 0.190050723
step: 8010 | loss: 0.186261927
step: 8020 | loss: 0.182473973
step: 8030 | loss: 0.178686846
step: 8040 | loss: 0.174900531
step: 8050 | loss: 0.171115016
step: 8060 | loss: 0.167330287
step: 8070 | loss: 0.163546334
step: 8080 | loss: 0.159763145
step: 8090 | loss: 0.155980708
step: 8100 | loss: 0.152199013
step: 8110 | loss: 0.148418051
step: 8120 | loss: 0.144637812
step: 8130 | loss: 0.140858287
step: 8140 | loss: 0.137079466
step: 8150 | loss: 0.133301341
step: 8160 | loss: 0.129523905
step: 8170 | loss: 0.125747149
step: 8180 | loss: 0.121971065
step: 8190 | loss: 0.118195646
step: 8200 | loss: 0.114420884
step: 8210 | loss: 0.110646772
step: 8220 | loss: 0.106873304
step: 8230 | loss: 0.103100471
step: 8240 | loss: 0.099328268
step: 8250 | loss: 0.095556688
step: 8260 | loss: 0.091785723
step: 8270 | loss: 0.088015369
step: 8280 | loss: 0.084245617
step: 8290 | loss: 0.080476462
step: 8300 | loss: 0.076707898
step: 8310 | loss: 0.072939919
step: 8320 | loss: 0.069172518
step: 8330 | loss: 0.065405689
step: 8340 | loss: 0.061639426
step: 8350 | loss: 0.057873724
step: 8360 | loss: 0.054108577
step: 8370 | loss: 0.050343978
step: 8380 | loss: 0.046579923
step: 8390 | loss: 0.042816405
step: 8400 | loss: 0.039053419
step: 8410 | loss: 0.035290960
step: 8420 | loss: 0.031529022
step: 8430 | loss: 0.027767599
step: 8440 | loss: 0.024006686
step: 8450 | loss: 0.020246279
step: 8460 | loss: 0.016486371
step: 8470 | loss: 0.012726957
step: 8480 | loss: 0.008968033
step: 8490 | loss: 0.005209594
step: 8500 | loss: 0.001451634
- final loss: 0.000700
- (cd _build/default/examples/opt && ./rmsprop.exe)
- 
step: 0 | loss: 6.044265907
step: 10 | loss: 6.036899674
step: 20 | loss: 6.031681629
step: 30 | loss: 6.026916813
step: 40 | loss: 6.022283375
step: 50 | loss: 6.017694433
step: 60 | loss: 6.013122039
step: 70 | loss: 6.008556709
step: 80 | loss: 6.003995168
step: 90 | loss: 5.999436279
step: 100 | loss: 5.994879648
step: 110 | loss: 5.990325135
step: 120 | loss: 5.985772694
step: 130 | loss: 5.981222307
step: 140 | loss: 5.976673967
step: 150 | loss: 5.972127669
step: 160 | loss: 5.967583409
step: 170 | loss: 5.963041183
step: 180 | loss: 5.958500983
step: 190 | loss: 5.953962800
step: 200 | loss: 5.949426621
step: 210 | loss: 5.944892429
step: 220 | loss: 5.940360199
step: 230 | loss: 5.935829897
step: 240 | loss: 5.931301476
step: 250 | loss: 5.926774862
step: 260 | loss: 5.922249949
step: 270 | loss: 5.917726574
step: 280 | loss: 5.913204529
step: 290 | loss: 5.908683628
step: 300 | loss: 5.904163800
step: 310 | loss: 5.899645039
step: 320 | loss: 5.895127348
step: 330 | loss: 5.890610728
step: 340 | loss: 5.886095183
step: 350 | loss: 5.881580715
step: 360 | loss: 5.877067327
step: 370 | loss: 5.872555020
step: 380 | loss: 5.868043798
step: 390 | loss: 5.863533663
step: 400 | loss: 5.859024617
step: 410 | loss: 5.854516664
step: 420 | loss: 5.850009804
step: 430 | loss: 5.845504042
step: 440 | loss: 5.840999379
step: 450 | loss: 5.836495818
step: 460 | loss: 5.831993362
step: 470 | loss: 5.827492013
step: 480 | loss: 5.822991774
step: 490 | loss: 5.818492647
step: 500 | loss: 5.813994636
step: 510 | loss: 5.809497741
step: 520 | loss: 5.805001967
step: 530 | loss: 5.800507315
step: 540 | loss: 5.796013789
step: 550 | loss: 5.791521390
step: 560 | loss: 5.787030122
step: 570 | loss: 5.782539988
step: 580 | loss: 5.778050989
step: 590 | loss: 5.773563128
step: 600 | loss: 5.769076409
step: 610 | loss: 5.764590833
step: 620 | loss: 5.760106404
step: 630 | loss: 5.755623124
step: 640 | loss: 5.751140996
step: 650 | loss: 5.746660022
step: 660 | loss: 5.742180206
step: 670 | loss: 5.737701549
step: 680 | loss: 5.733224055
step: 690 | loss: 5.728747726
step: 700 | loss: 5.724272565
step: 710 | loss: 5.719798576
step: 720 | loss: 5.715325759
step: 730 | loss: 5.710854119
step: 740 | loss: 5.706383658
step: 750 | loss: 5.701914379
step: 760 | loss: 5.697446285
step: 770 | loss: 5.692979378
step: 780 | loss: 5.688513661
step: 790 | loss: 5.684049137
step: 800 | loss: 5.679585809
step: 810 | loss: 5.675123680
step: 820 | loss: 5.670662752
step: 830 | loss: 5.666203028
step: 840 | loss: 5.661744512
step: 850 | loss: 5.657287205
step: 860 | loss: 5.652831111
step: 870 | loss: 5.648376233
step: 880 | loss: 5.643922574
step: 890 | loss: 5.639470136
step: 900 | loss: 5.635018922
step: 910 | loss: 5.630568936
step: 920 | loss: 5.626120180
step: 930 | loss: 5.621672657
step: 940 | loss: 5.617226370
step: 950 | loss: 5.612781322
step: 960 | loss: 5.608337515
step: 970 | loss: 5.603894954
step: 980 | loss: 5.599453640
step: 990 | loss: 5.595013578
step: 1000 | loss: 5.590574769
step: 1010 | loss: 5.586137216
step: 1020 | loss: 5.581700924
step: 1030 | loss: 5.577265894
step: 1040 | loss: 5.572832129
step: 1050 | loss: 5.568399634
step: 1060 | loss: 5.563968410
step: 1070 | loss: 5.559538462
step: 1080 | loss: 5.555109791
step: 1090 | loss: 5.550682401
step: 1100 | loss: 5.546256294
step: 1110 | loss: 5.541831475
step: 1120 | loss: 5.537407947
step: 1130 | loss: 5.532985711
step: 1140 | loss: 5.528564772
step: 1150 | loss: 5.524145132
step: 1160 | loss: 5.519726794
step: 1170 | loss: 5.515309763
step: 1180 | loss: 5.510894040
step: 1190 | loss: 5.506479629
step: 1200 | loss: 5.502066533
step: 1210 | loss: 5.497654756
step: 1220 | loss: 5.493244300
step: 1230 | loss: 5.488835168
step: 1240 | loss: 5.484427365
step: 1250 | loss: 5.480020892
step: 1260 | loss: 5.475615754
step: 1270 | loss: 5.471211953
step: 1280 | loss: 5.466809493
step: 1290 | loss: 5.462408376
step: 1300 | loss: 5.458008607
step: 1310 | loss: 5.453610188
step: 1320 | loss: 5.449213123
step: 1330 | loss: 5.444817415
step: 1340 | loss: 5.440423067
step: 1350 | loss: 5.436030083
step: 1360 | loss: 5.431638465
step: 1370 | loss: 5.427248218
step: 1380 | loss: 5.422859344
step: 1390 | loss: 5.418471847
step: 1400 | loss: 5.414085730
step: 1410 | loss: 5.409700996
step: 1420 | loss: 5.405317650
step: 1430 | loss: 5.400935693
step: 1440 | loss: 5.396555131
step: 1450 | loss: 5.392175965
step: 1460 | loss: 5.387798200
step: 1470 | loss: 5.383421838
step: 1480 | loss: 5.379046884
step: 1490 | loss: 5.374673340
step: 1500 | loss: 5.370301211
step: 1510 | loss: 5.365930499
step: 1520 | loss: 5.361561208
step: 1530 | loss: 5.357193341
step: 1540 | loss: 5.352826903
step: 1550 | loss: 5.348461896
step: 1560 | loss: 5.344098324
step: 1570 | loss: 5.339736190
step: 1580 | loss: 5.335375499
step: 1590 | loss: 5.331016253
step: 1600 | loss: 5.326658456
step: 1610 | loss: 5.322302112
step: 1620 | loss: 5.317947224
step: 1630 | loss: 5.313593796
step: 1640 | loss: 5.309241831
step: 1650 | loss: 5.304891333
step: 1660 | loss: 5.300542305
step: 1670 | loss: 5.296194752
step: 1680 | loss: 5.291848677
step: 1690 | loss: 5.287504083
step: 1700 | loss: 5.283160974
step: 1710 | loss: 5.278819354
step: 1720 | loss: 5.274479226
step: 1730 | loss: 5.270140595
step: 1740 | loss: 5.265803463
step: 1750 | loss: 5.261467835
step: 1760 | loss: 5.257133714
step: 1770 | loss: 5.252801103
step: 1780 | loss: 5.248470008
step: 1790 | loss: 5.244140431
step: 1800 | loss: 5.239812376
step: 1810 | loss: 5.235485847
step: 1820 | loss: 5.231160848
step: 1830 | loss: 5.226837383
step: 1840 | loss: 5.222515454
step: 1850 | loss: 5.218195067
step: 1860 | loss: 5.213876225
step: 1870 | loss: 5.209558931
step: 1880 | loss: 5.205243191
step: 1890 | loss: 5.200929006
step: 1900 | loss: 5.196616382
step: 1910 | loss: 5.192305323
step: 1920 | loss: 5.187995831
step: 1930 | loss: 5.183687912
step: 1940 | loss: 5.179381568
step: 1950 | loss: 5.175076805
step: 1960 | loss: 5.170773625
step: 1970 | loss: 5.166472033
step: 1980 | loss: 5.162172033
step: 1990 | loss: 5.157873628
step: 2000 | loss: 5.153576823
step: 2010 | loss: 5.149281622
step: 2020 | loss: 5.144988029
step: 2030 | loss: 5.140696047
step: 2040 | loss: 5.136405681
step: 2050 | loss: 5.132116935
step: 2060 | loss: 5.127829812
step: 2070 | loss: 5.123544318
step: 2080 | loss: 5.119260456
step: 2090 | loss: 5.114978229
step: 2100 | loss: 5.110697643
step: 2110 | loss: 5.106418701
step: 2120 | loss: 5.102141408
step: 2130 | loss: 5.097865767
step: 2140 | loss: 5.093591784
step: 2150 | loss: 5.089319461
step: 2160 | loss: 5.085048803
step: 2170 | loss: 5.080779814
step: 2180 | loss: 5.076512499
step: 2190 | loss: 5.072246861
step: 2200 | loss: 5.067982906
step: 2210 | loss: 5.063720636
step: 2220 | loss: 5.059460057
step: 2230 | loss: 5.055201173
step: 2240 | loss: 5.050943988
step: 2250 | loss: 5.046688506
step: 2260 | loss: 5.042434731
step: 2270 | loss: 5.038182669
step: 2280 | loss: 5.033932322
step: 2290 | loss: 5.029683696
step: 2300 | loss: 5.025436795
step: 2310 | loss: 5.021191624
step: 2320 | loss: 5.016948185
step: 2330 | loss: 5.012706485
step: 2340 | loss: 5.008466528
step: 2350 | loss: 5.004228317
step: 2360 | loss: 4.999991858
step: 2370 | loss: 4.995757154
step: 2380 | loss: 4.991524211
step: 2390 | loss: 4.987293032
step: 2400 | loss: 4.983063622
step: 2410 | loss: 4.978835986
step: 2420 | loss: 4.974610128
step: 2430 | loss: 4.970386053
step: 2440 | loss: 4.966163765
step: 2450 | loss: 4.961943269
step: 2460 | loss: 4.957724570
step: 2470 | loss: 4.953507671
step: 2480 | loss: 4.949292577
step: 2490 | loss: 4.945079294
step: 2500 | loss: 4.940867826
step: 2510 | loss: 4.936658177
step: 2520 | loss: 4.932450352
step: 2530 | loss: 4.928244356
step: 2540 | loss: 4.924040193
step: 2550 | loss: 4.919837868
step: 2560 | loss: 4.915637386
step: 2570 | loss: 4.911438751
step: 2580 | loss: 4.907241969
step: 2590 | loss: 4.903047043
step: 2600 | loss: 4.898853980
step: 2610 | loss: 4.894662782
step: 2620 | loss: 4.890473456
step: 2630 | loss: 4.886286006
step: 2640 | loss: 4.882100437
step: 2650 | loss: 4.877916754
step: 2660 | loss: 4.873734961
step: 2670 | loss: 4.869555064
step: 2680 | loss: 4.865377067
step: 2690 | loss: 4.861200975
step: 2700 | loss: 4.857026793
step: 2710 | loss: 4.852854526
step: 2720 | loss: 4.848684180
step: 2730 | loss: 4.844515758
step: 2740 | loss: 4.840349265
step: 2750 | loss: 4.836184708
step: 2760 | loss: 4.832022091
step: 2770 | loss: 4.827861418
step: 2780 | loss: 4.823702695
step: 2790 | loss: 4.819545927
step: 2800 | loss: 4.815391119
step: 2810 | loss: 4.811238275
step: 2820 | loss: 4.807087402
step: 2830 | loss: 4.802938504
step: 2840 | loss: 4.798791587
step: 2850 | loss: 4.794646654
step: 2860 | loss: 4.790503712
step: 2870 | loss: 4.786362766
step: 2880 | loss: 4.782223821
step: 2890 | loss: 4.778086882
step: 2900 | loss: 4.773951953
step: 2910 | loss: 4.769819042
step: 2920 | loss: 4.765688152
step: 2930 | loss: 4.761559289
step: 2940 | loss: 4.757432458
step: 2950 | loss: 4.753307664
step: 2960 | loss: 4.749184914
step: 2970 | loss: 4.745064211
step: 2980 | loss: 4.740945562
step: 2990 | loss: 4.736828971
step: 3000 | loss: 4.732714445
step: 3010 | loss: 4.728601988
step: 3020 | loss: 4.724491606
step: 3030 | loss: 4.720383304
step: 3040 | loss: 4.716277088
step: 3050 | loss: 4.712172963
step: 3060 | loss: 4.708070934
step: 3070 | loss: 4.703971008
step: 3080 | loss: 4.699873189
step: 3090 | loss: 4.695777483
step: 3100 | loss: 4.691683895
step: 3110 | loss: 4.687592432
step: 3120 | loss: 4.683503098
step: 3130 | loss: 4.679415899
step: 3140 | loss: 4.675330841
step: 3150 | loss: 4.671247930
step: 3160 | loss: 4.667167170
step: 3170 | loss: 4.663088568
step: 3180 | loss: 4.659012129
step: 3190 | loss: 4.654937860
step: 3200 | loss: 4.650865764
step: 3210 | loss: 4.646795849
step: 3220 | loss: 4.642728120
step: 3230 | loss: 4.638662583
step: 3240 | loss: 4.634599243
step: 3250 | loss: 4.630538107
step: 3260 | loss: 4.626479179
step: 3270 | loss: 4.622422467
step: 3280 | loss: 4.618367975
step: 3290 | loss: 4.614315709
step: 3300 | loss: 4.610265676
step: 3310 | loss: 4.606217881
step: 3320 | loss: 4.602172330
step: 3330 | loss: 4.598129030
step: 3340 | loss: 4.594087985
step: 3350 | loss: 4.590049201
step: 3360 | loss: 4.586012686
step: 3370 | loss: 4.581978445
step: 3380 | loss: 4.577946483
step: 3390 | loss: 4.573916807
step: 3400 | loss: 4.569889422
step: 3410 | loss: 4.565864336
step: 3420 | loss: 4.561841553
step: 3430 | loss: 4.557821081
step: 3440 | loss: 4.553802924
step: 3450 | loss: 4.549787090
step: 3460 | loss: 4.545773584
step: 3470 | loss: 4.541762413
step: 3480 | loss: 4.537753582
step: 3490 | loss: 4.533747098
step: 3500 | loss: 4.529742967
step: 3510 | loss: 4.525741195
step: 3520 | loss: 4.521741788
step: 3530 | loss: 4.517744754
step: 3540 | loss: 4.513750097
step: 3550 | loss: 4.509757825
step: 3560 | loss: 4.505767943
step: 3570 | loss: 4.501780458
step: 3580 | loss: 4.497795377
step: 3590 | loss: 4.493812705
step: 3600 | loss: 4.489832449
step: 3610 | loss: 4.485854616
step: 3620 | loss: 4.481879212
step: 3630 | loss: 4.477906243
step: 3640 | loss: 4.473935715
step: 3650 | loss: 4.469967636
step: 3660 | loss: 4.466002012
step: 3670 | loss: 4.462038849
step: 3680 | loss: 4.458078154
step: 3690 | loss: 4.454119933
step: 3700 | loss: 4.450164193
step: 3710 | loss: 4.446210941
step: 3720 | loss: 4.442260182
step: 3730 | loss: 4.438311925
step: 3740 | loss: 4.434366175
step: 3750 | loss: 4.430422939
step: 3760 | loss: 4.426482224
step: 3770 | loss: 4.422544036
step: 3780 | loss: 4.418608382
step: 3790 | loss: 4.414675270
step: 3800 | loss: 4.410744705
step: 3810 | loss: 4.406816695
step: 3820 | loss: 4.402891246
step: 3830 | loss: 4.398968365
step: 3840 | loss: 4.395048059
step: 3850 | loss: 4.391130335
step: 3860 | loss: 4.387215200
step: 3870 | loss: 4.383302660
step: 3880 | loss: 4.379392723
step: 3890 | loss: 4.375485396
step: 3900 | loss: 4.371580685
step: 3910 | loss: 4.367678597
step: 3920 | loss: 4.363779140
step: 3930 | loss: 4.359882320
step: 3940 | loss: 4.355988145
step: 3950 | loss: 4.352096621
step: 3960 | loss: 4.348207756
step: 3970 | loss: 4.344321557
step: 3980 | loss: 4.340438031
step: 3990 | loss: 4.336557185
step: 4000 | loss: 4.332679026
step: 4010 | loss: 4.328803561
step: 4020 | loss: 4.324930798
step: 4030 | loss: 4.321060743
step: 4040 | loss: 4.317193405
step: 4050 | loss: 4.313328790
step: 4060 | loss: 4.309466906
step: 4070 | loss: 4.305607759
step: 4080 | loss: 4.301751358
step: 4090 | loss: 4.297897709
step: 4100 | loss: 4.294046821
step: 4110 | loss: 4.290198699
step: 4120 | loss: 4.286353353
step: 4130 | loss: 4.282510788
step: 4140 | loss: 4.278671014
step: 4150 | loss: 4.274834036
step: 4160 | loss: 4.270999863
step: 4170 | loss: 4.267168502
step: 4180 | loss: 4.263339961
step: 4190 | loss: 4.259514247
step: 4200 | loss: 4.255691368
step: 4210 | loss: 4.251871331
step: 4220 | loss: 4.248054144
step: 4230 | loss: 4.244239815
step: 4240 | loss: 4.240428351
step: 4250 | loss: 4.236619760
step: 4260 | loss: 4.232814050
step: 4270 | loss: 4.229011228
step: 4280 | loss: 4.225211302
step: 4290 | loss: 4.221414281
step: 4300 | loss: 4.217620171
step: 4310 | loss: 4.213828981
step: 4320 | loss: 4.210040718
step: 4330 | loss: 4.206255390
step: 4340 | loss: 4.202473006
step: 4350 | loss: 4.198693572
step: 4360 | loss: 4.194917097
step: 4370 | loss: 4.191143590
step: 4380 | loss: 4.187373057
step: 4390 | loss: 4.183605507
step: 4400 | loss: 4.179840948
step: 4410 | loss: 4.176079388
step: 4420 | loss: 4.172320835
step: 4430 | loss: 4.168565296
step: 4440 | loss: 4.164812781
step: 4450 | loss: 4.161063297
step: 4460 | loss: 4.157316853
step: 4470 | loss: 4.153573456
step: 4480 | loss: 4.149833115
step: 4490 | loss: 4.146095837
step: 4500 | loss: 4.142361632
step: 4510 | loss: 4.138630507
step: 4520 | loss: 4.134902471
step: 4530 | loss: 4.131177532
step: 4540 | loss: 4.127455699
step: 4550 | loss: 4.123736978
step: 4560 | loss: 4.120021380
step: 4570 | loss: 4.116308913
step: 4580 | loss: 4.112599584
step: 4590 | loss: 4.108893402
step: 4600 | loss: 4.105190376
step: 4610 | loss: 4.101490514
step: 4620 | loss: 4.097793825
step: 4630 | loss: 4.094100317
step: 4640 | loss: 4.090409998
step: 4650 | loss: 4.086722878
step: 4660 | loss: 4.083038965
step: 4670 | loss: 4.079358268
step: 4680 | loss: 4.075680794
step: 4690 | loss: 4.072006553
step: 4700 | loss: 4.068335554
step: 4710 | loss: 4.064667805
step: 4720 | loss: 4.061003315
step: 4730 | loss: 4.057342092
step: 4740 | loss: 4.053684146
step: 4750 | loss: 4.050029485
step: 4760 | loss: 4.046378118
step: 4770 | loss: 4.042730054
step: 4780 | loss: 4.039085301
step: 4790 | loss: 4.035443870
step: 4800 | loss: 4.031805767
step: 4810 | loss: 4.028171003
step: 4820 | loss: 4.024539587
step: 4830 | loss: 4.020911527
step: 4840 | loss: 4.017286832
step: 4850 | loss: 4.013665512
step: 4860 | loss: 4.010047575
step: 4870 | loss: 4.006433031
step: 4880 | loss: 4.002821888
step: 4890 | loss: 3.999214156
step: 4900 | loss: 3.995609844
step: 4910 | loss: 3.992008961
step: 4920 | loss: 3.988411516
step: 4930 | loss: 3.984817519
step: 4940 | loss: 3.981226978
step: 4950 | loss: 3.977639903
step: 4960 | loss: 3.974056303
step: 4970 | loss: 3.970476188
step: 4980 | loss: 3.966899566
step: 4990 | loss: 3.963326448
step: 5000 | loss: 3.959756842
step: 5010 | loss: 3.956190758
step: 5020 | loss: 3.952628206
step: 5030 | loss: 3.949069194
step: 5040 | loss: 3.945513732
step: 5050 | loss: 3.941961830
step: 5060 | loss: 3.938413498
step: 5070 | loss: 3.934868744
step: 5080 | loss: 3.931327578
step: 5090 | loss: 3.927790010
step: 5100 | loss: 3.924256050
step: 5110 | loss: 3.920725707
step: 5120 | loss: 3.917198990
step: 5130 | loss: 3.913675910
step: 5140 | loss: 3.910156476
step: 5150 | loss: 3.906640698
step: 5160 | loss: 3.903128585
step: 5170 | loss: 3.899620148
step: 5180 | loss: 3.896115396
step: 5190 | loss: 3.892614339
step: 5200 | loss: 3.889116986
step: 5210 | loss: 3.885623348
step: 5220 | loss: 3.882133435
step: 5230 | loss: 3.878647255
step: 5240 | loss: 3.875164820
step: 5250 | loss: 3.871686140
step: 5260 | loss: 3.868211223
step: 5270 | loss: 3.864740081
step: 5280 | loss: 3.861272723
step: 5290 | loss: 3.857809159
step: 5300 | loss: 3.854349399
step: 5310 | loss: 3.850893454
step: 5320 | loss: 3.847441333
step: 5330 | loss: 3.843993046
step: 5340 | loss: 3.840548605
step: 5350 | loss: 3.837108018
step: 5360 | loss: 3.833671296
step: 5370 | loss: 3.830238450
step: 5380 | loss: 3.826809489
step: 5390 | loss: 3.823384424
step: 5400 | loss: 3.819963264
step: 5410 | loss: 3.816546021
step: 5420 | loss: 3.813132705
step: 5430 | loss: 3.809723326
step: 5440 | loss: 3.806317894
step: 5450 | loss: 3.802916420
step: 5460 | loss: 3.799518914
step: 5470 | loss: 3.796125387
step: 5480 | loss: 3.792735848
step: 5490 | loss: 3.789350309
step: 5500 | loss: 3.785968780
step: 5510 | loss: 3.782591272
step: 5520 | loss: 3.779217794
step: 5530 | loss: 3.775848358
step: 5540 | loss: 3.772482974
step: 5550 | loss: 3.769121653
step: 5560 | loss: 3.765764405
step: 5570 | loss: 3.762411242
step: 5580 | loss: 3.759062172
step: 5590 | loss: 3.755717209
step: 5600 | loss: 3.752376361
step: 5610 | loss: 3.749039639
step: 5620 | loss: 3.745707056
step: 5630 | loss: 3.742378620
step: 5640 | loss: 3.739054343
step: 5650 | loss: 3.735734236
step: 5660 | loss: 3.732418310
step: 5670 | loss: 3.729106575
step: 5680 | loss: 3.725799042
step: 5690 | loss: 3.722495722
step: 5700 | loss: 3.719196626
step: 5710 | loss: 3.715901765
step: 5720 | loss: 3.712611149
step: 5730 | loss: 3.709324791
step: 5740 | loss: 3.706042699
step: 5750 | loss: 3.702764887
step: 5760 | loss: 3.699491364
step: 5770 | loss: 3.696222141
step: 5780 | loss: 3.692957230
step: 5790 | loss: 3.689696642
step: 5800 | loss: 3.686440387
step: 5810 | loss: 3.683188477
step: 5820 | loss: 3.679940922
step: 5830 | loss: 3.676697735
step: 5840 | loss: 3.673458925
step: 5850 | loss: 3.670224504
step: 5860 | loss: 3.666994483
step: 5870 | loss: 3.663768874
step: 5880 | loss: 3.660547687
step: 5890 | loss: 3.657330933
step: 5900 | loss: 3.654118624
step: 5910 | loss: 3.650910771
step: 5920 | loss: 3.647707385
step: 5930 | loss: 3.644508477
step: 5940 | loss: 3.641314059
step: 5950 | loss: 3.638124141
step: 5960 | loss: 3.634938735
step: 5970 | loss: 3.631757852
step: 5980 | loss: 3.628581503
step: 5990 | loss: 3.625409700
step: 6000 | loss: 3.622242453
step: 6010 | loss: 3.619079775
step: 6020 | loss: 3.615921675
step: 6030 | loss: 3.612768166
step: 6040 | loss: 3.609619258
step: 6050 | loss: 3.606474964
step: 6060 | loss: 3.603335293
step: 6070 | loss: 3.600200257
step: 6080 | loss: 3.597069868
step: 6090 | loss: 3.593944137
step: 6100 | loss: 3.590823075
step: 6110 | loss: 3.587706692
step: 6120 | loss: 3.584595001
step: 6130 | loss: 3.581488012
step: 6140 | loss: 3.578385736
step: 6150 | loss: 3.575288185
step: 6160 | loss: 3.572195370
step: 6170 | loss: 3.569107301
step: 6180 | loss: 3.566023990
step: 6190 | loss: 3.562945448
step: 6200 | loss: 3.559871686
step: 6210 | loss: 3.556802714
step: 6220 | loss: 3.553738544
step: 6230 | loss: 3.550679187
step: 6240 | loss: 3.547624652
step: 6250 | loss: 3.544574952
step: 6260 | loss: 3.541530096
step: 6270 | loss: 3.538490095
step: 6280 | loss: 3.535454960
step: 6290 | loss: 3.532424701
step: 6300 | loss: 3.529399329
step: 6310 | loss: 3.526378854
step: 6320 | loss: 3.523363286
step: 6330 | loss: 3.520352635
step: 6340 | loss: 3.517346911
step: 6350 | loss: 3.514346124
step: 6360 | loss: 3.511350284
step: 6370 | loss: 3.508359399
step: 6380 | loss: 3.505373480
step: 6390 | loss: 3.502392535
step: 6400 | loss: 3.499416573
step: 6410 | loss: 3.496445603
step: 6420 | loss: 3.493479633
step: 6430 | loss: 3.490518670
step: 6440 | loss: 3.487562723
step: 6450 | loss: 3.484611799
step: 6460 | loss: 3.481665904
step: 6470 | loss: 3.478725045
step: 6480 | loss: 3.475789226
step: 6490 | loss: 3.472858454
step: 6500 | loss: 3.469932731
step: 6510 | loss: 3.467012060
step: 6520 | loss: 3.464096444
step: 6530 | loss: 3.461185883
step: 6540 | loss: 3.458280376
step: 6550 | loss: 3.455379919
step: 6560 | loss: 3.452484507
step: 6570 | loss: 3.449594130
step: 6580 | loss: 3.446708776
step: 6590 | loss: 3.443828427
step: 6600 | loss: 3.440953057
step: 6610 | loss: 3.438082631
step: 6620 | loss: 3.435217101
step: 6630 | loss: 3.432356398
step: 6640 | loss: 3.429500424
step: 6650 | loss: 3.426649034
step: 6660 | loss: 3.423802010
step: 6670 | loss: 3.420959036
step: 6680 | loss: 3.418119727
step: 6690 | loss: 3.415283797
step: 6700 | loss: 3.412451148
step: 6710 | loss: 3.409621753
step: 6720 | loss: 3.406795580
step: 6730 | loss: 3.403972587
step: 6740 | loss: 3.401152713
step: 6750 | loss: 3.398335870
step: 6760 | loss: 3.395521931
step: 6770 | loss: 3.392710701
step: 6780 | loss: 3.389901893
step: 6790 | loss: 3.387095138
step: 6800 | loss: 3.384290123
step: 6810 | loss: 3.381486732
step: 6820 | loss: 3.378684960
step: 6830 | loss: 3.375884810
step: 6840 | loss: 3.373086285
step: 6850 | loss: 3.370289390
step: 6860 | loss: 3.367494129
step: 6870 | loss: 3.364700504
step: 6880 | loss: 3.361908522
step: 6890 | loss: 3.359118184
step: 6900 | loss: 3.356329496
step: 6910 | loss: 3.353542462
step: 6920 | loss: 3.350757084
step: 6930 | loss: 3.347973368
step: 6940 | loss: 3.345191317
step: 6950 | loss: 3.342410935
step: 6960 | loss: 3.339632226
step: 6970 | loss: 3.336855195
step: 6980 | loss: 3.334079845
step: 6990 | loss: 3.331306180
step: 7000 | loss: 3.328534204
step: 7010 | loss: 3.325763922
step: 7020 | loss: 3.322995337
step: 7030 | loss: 3.320228454
step: 7040 | loss: 3.317463276
step: 7050 | loss: 3.314699807
step: 7060 | loss: 3.311938053
step: 7070 | loss: 3.309178016
step: 7080 | loss: 3.306419700
step: 7090 | loss: 3.303663111
step: 7100 | loss: 3.300908252
step: 7110 | loss: 3.298155127
step: 7120 | loss: 3.295403740
step: 7130 | loss: 3.292654095
step: 7140 | loss: 3.289906197
step: 7150 | loss: 3.287160050
step: 7160 | loss: 3.284415657
step: 7170 | loss: 3.281673023
step: 7180 | loss: 3.278932152
step: 7190 | loss: 3.276193048
step: 7200 | loss: 3.273455716
step: 7210 | loss: 3.270720159
step: 7220 | loss: 3.267986381
step: 7230 | loss: 3.265254387
step: 7240 | loss: 3.262524182
step: 7250 | loss: 3.259795768
step: 7260 | loss: 3.257069150
step: 7270 | loss: 3.254344333
step: 7280 | loss: 3.251621321
step: 7290 | loss: 3.248900117
step: 7300 | loss: 3.246180726
step: 7310 | loss: 3.243463152
step: 7320 | loss: 3.240747400
step: 7330 | loss: 3.238033473
step: 7340 | loss: 3.235321375
step: 7350 | loss: 3.232611111
step: 7360 | loss: 3.229902685
step: 7370 | loss: 3.227196102
step: 7380 | loss: 3.224491364
step: 7390 | loss: 3.221788477
step: 7400 | loss: 3.219087444
step: 7410 | loss: 3.216388270
step: 7420 | loss: 3.213690958
step: 7430 | loss: 3.210995514
step: 7440 | loss: 3.208301940
step: 7450 | loss: 3.205610241
step: 7460 | loss: 3.202920422
step: 7470 | loss: 3.200232486
step: 7480 | loss: 3.197546437
step: 7490 | loss: 3.194862279
step: 7500 | loss: 3.192180017
step: 7510 | loss: 3.189499654
step: 7520 | loss: 3.186821194
step: 7530 | loss: 3.184144641
step: 7540 | loss: 3.181470000
step: 7550 | loss: 3.178797273
step: 7560 | loss: 3.176126465
step: 7570 | loss: 3.173457580
step: 7580 | loss: 3.170790622
step: 7590 | loss: 3.168125594
step: 7600 | loss: 3.165462499
step: 7610 | loss: 3.162801342
step: 7620 | loss: 3.160142127
step: 7630 | loss: 3.157484855
step: 7640 | loss: 3.154829532
step: 7650 | loss: 3.152176161
step: 7660 | loss: 3.149524744
step: 7670 | loss: 3.146875285
step: 7680 | loss: 3.144227787
step: 7690 | loss: 3.141582253
step: 7700 | loss: 3.138938687
step: 7710 | loss: 3.136297090
step: 7720 | loss: 3.133657465
step: 7730 | loss: 3.131019815
step: 7740 | loss: 3.128384141
step: 7750 | loss: 3.125750447
step: 7760 | loss: 3.123118734
step: 7770 | loss: 3.120489002
step: 7780 | loss: 3.117861255
step: 7790 | loss: 3.115235491
step: 7800 | loss: 3.112611713
step: 7810 | loss: 3.109989920
step: 7820 | loss: 3.107370111
step: 7830 | loss: 3.104752285
step: 7840 | loss: 3.102136441
step: 7850 | loss: 3.099522576
step: 7860 | loss: 3.096910686
step: 7870 | loss: 3.094300767
step: 7880 | loss: 3.091692811
step: 7890 | loss: 3.089086812
step: 7900 | loss: 3.086482759
step: 7910 | loss: 3.083880639
step: 7920 | loss: 3.081280435
step: 7930 | loss: 3.078682125
step: 7940 | loss: 3.076085682
step: 7950 | loss: 3.073491070
step: 7960 | loss: 3.070898240
step: 7970 | loss: 3.068307126
step: 7980 | loss: 3.065717633
step: 7990 | loss: 3.063129628
step: 8000 | loss: 3.060542909
step: 8010 | loss: 3.057957178
step: 8020 | loss: 3.055372033
step: 8030 | loss: 3.052787090
step: 8040 | loss: 3.050202171
step: 8050 | loss: 3.047617252
step: 8060 | loss: 3.045032334
step: 8070 | loss: 3.042447415
step: 8080 | loss: 3.039862497
step: 8090 | loss: 3.037277578
step: 8100 | loss: 3.034692660
step: 8110 | loss: 3.032107741
step: 8120 | loss: 3.029522823
step: 8130 | loss: 3.026937905
step: 8140 | loss: 3.024352986
step: 8150 | loss: 3.021768068
step: 8160 | loss: 3.019183149
step: 8170 | loss: 3.016598231
step: 8180 | loss: 3.014013312
step: 8190 | loss: 3.011428394
step: 8200 | loss: 3.008843475
step: 8210 | loss: 3.006258557
step: 8220 | loss: 3.003673639
step: 8230 | loss: 3.001088720
step: 8240 | loss: 2.998503802
step: 8250 | loss: 2.995918883
step: 8260 | loss: 2.993333965
step: 8270 | loss: 2.990749046
step: 8280 | loss: 2.988164128
step: 8290 | loss: 2.985579210
step: 8300 | loss: 2.982994291
step: 8310 | loss: 2.980409373
step: 8320 | loss: 2.977824454
step: 8330 | loss: 2.975239536
step: 8340 | loss: 2.972654617
step: 8350 | loss: 2.970069699
step: 8360 | loss: 2.967484780
step: 8370 | loss: 2.964899862
step: 8380 | loss: 2.962314944
step: 8390 | loss: 2.959730025
step: 8400 | loss: 2.957145107
step: 8410 | loss: 2.954560188
step: 8420 | loss: 2.951975270
step: 8430 | loss: 2.949390351
step: 8440 | loss: 2.946805433
step: 8450 | loss: 2.944220515
step: 8460 | loss: 2.941635596
step: 8470 | loss: 2.939050678
step: 8480 | loss: 2.936465759
step: 8490 | loss: 2.933880841
step: 8500 | loss: 2.931295922
step: 8510 | loss: 2.928711004
step: 8520 | loss: 2.926126085
step: 8530 | loss: 2.923541167
step: 8540 | loss: 2.920956249
step: 8550 | loss: 2.918371330
step: 8560 | loss: 2.915786412
step: 8570 | loss: 2.913201493
step: 8580 | loss: 2.910616575
step: 8590 | loss: 2.908031656
step: 8600 | loss: 2.905446738
step: 8610 | loss: 2.902861819
step: 8620 | loss: 2.900276901
step: 8630 | loss: 2.897691983
step: 8640 | loss: 2.895107064
step: 8650 | loss: 2.892522146
step: 8660 | loss: 2.889937227
step: 8670 | loss: 2.887352309
step: 8680 | loss: 2.884767390
step: 8690 | loss: 2.882182472
step: 8700 | loss: 2.879597554
step: 8710 | loss: 2.877012635
step: 8720 | loss: 2.874427717
step: 8730 | loss: 2.871842798
step: 8740 | loss: 2.869257880
step: 8750 | loss: 2.866672961
step: 8760 | loss: 2.864088043
step: 8770 | loss: 2.861503124
step: 8780 | loss: 2.858918206
step: 8790 | loss: 2.856333288
step: 8800 | loss: 2.853748369
step: 8810 | loss: 2.851163451
step: 8820 | loss: 2.848578532
step: 8830 | loss: 2.845993614
step: 8840 | loss: 2.843408695
step: 8850 | loss: 2.840823777
step: 8860 | loss: 2.838238858
step: 8870 | loss: 2.835653940
step: 8880 | loss: 2.833069022
step: 8890 | loss: 2.830484103
step: 8900 | loss: 2.827899185
step: 8910 | loss: 2.825314266
step: 8920 | loss: 2.822729348
step: 8930 | loss: 2.820144429
step: 8940 | loss: 2.817559511
step: 8950 | loss: 2.814974593
step: 8960 | loss: 2.812389674
step: 8970 | loss: 2.809804756
step: 8980 | loss: 2.807219837
step: 8990 | loss: 2.804634919
step: 9000 | loss: 2.802050000
step: 9010 | loss: 2.799465082
step: 9020 | loss: 2.796880163
step: 9030 | loss: 2.794295245
step: 9040 | loss: 2.791710327
step: 9050 | loss: 2.789125408
step: 9060 | loss: 2.786540490
step: 9070 | loss: 2.783955571
step: 9080 | loss: 2.781370653
step: 9090 | loss: 2.778785734
step: 9100 | loss: 2.776200816
step: 9110 | loss: 2.773615897
step: 9120 | loss: 2.771030979
step: 9130 | loss: 2.768446061
step: 9140 | loss: 2.765861142
step: 9150 | loss: 2.763276224
step: 9160 | loss: 2.760691305
step: 9170 | loss: 2.758106387
step: 9180 | loss: 2.755521468
step: 9190 | loss: 2.752936550
step: 9200 | loss: 2.750351632
step: 9210 | loss: 2.747766713
step: 9220 | loss: 2.745181795
step: 9230 | loss: 2.742596876
step: 9240 | loss: 2.740011958
step: 9250 | loss: 2.737427039
step: 9260 | loss: 2.734842121
step: 9270 | loss: 2.732257202
step: 9280 | loss: 2.729672284
step: 9290 | loss: 2.727087366
step: 9300 | loss: 2.724502447
step: 9310 | loss: 2.721917529
step: 9320 | loss: 2.719332610
step: 9330 | loss: 2.716747692
step: 9340 | loss: 2.714162773
step: 9350 | loss: 2.711577855
step: 9360 | loss: 2.708992936
step: 9370 | loss: 2.706408018
step: 9380 | loss: 2.703823100
step: 9390 | loss: 2.701238181
step: 9400 | loss: 2.698653263
step: 9410 | loss: 2.696068344
step: 9420 | loss: 2.693483426
step: 9430 | loss: 2.690898507
step: 9440 | loss: 2.688313589
step: 9450 | loss: 2.685728671
step: 9460 | loss: 2.683143752
step: 9470 | loss: 2.680558834
step: 9480 | loss: 2.677973915
step: 9490 | loss: 2.675388997
step: 9500 | loss: 2.672804078
step: 9510 | loss: 2.670219160
step: 9520 | loss: 2.667634241
step: 9530 | loss: 2.665049323
step: 9540 | loss: 2.662464405
step: 9550 | loss: 2.659879486
step: 9560 | loss: 2.657294568
step: 9570 | loss: 2.654709649
step: 9580 | loss: 2.652124731
step: 9590 | loss: 2.649539812
step: 9600 | loss: 2.646954894
step: 9610 | loss: 2.644369976
step: 9620 | loss: 2.641785057
step: 9630 | loss: 2.639200139
step: 9640 | loss: 2.636615220
step: 9650 | loss: 2.634030302
step: 9660 | loss: 2.631445383
step: 9670 | loss: 2.628860465
step: 9680 | loss: 2.626275546
step: 9690 | loss: 2.623690628
step: 9700 | loss: 2.621105710
step: 9710 | loss: 2.618520791
step: 9720 | loss: 2.615935873
step: 9730 | loss: 2.613350954
step: 9740 | loss: 2.610766036
step: 9750 | loss: 2.608181117
step: 9760 | loss: 2.605596199
step: 9770 | loss: 2.603011280
step: 9780 | loss: 2.600426362
step: 9790 | loss: 2.597841444
step: 9800 | loss: 2.595256525
step: 9810 | loss: 2.592671607
step: 9820 | loss: 2.590086688
step: 9830 | loss: 2.587501770
step: 9840 | loss: 2.584916851
step: 9850 | loss: 2.582331933
step: 9860 | loss: 2.579747015
step: 9870 | loss: 2.577162096
step: 9880 | loss: 2.574577178
step: 9890 | loss: 2.571992259
step: 9900 | loss: 2.569407341
step: 9910 | loss: 2.566822422
step: 9920 | loss: 2.564237504
step: 9930 | loss: 2.561652585
step: 9940 | loss: 2.559067667
step: 9950 | loss: 2.556482749
step: 9960 | loss: 2.553897830
step: 9970 | loss: 2.551312912
step: 9980 | loss: 2.548727993
step: 9990 | loss: 2.546143075
step: 10000 | loss: 2.543558156
step: 10010 | loss: 2.540973238
step: 10020 | loss: 2.538388319
step: 10030 | loss: 2.535803401
step: 10040 | loss: 2.533218483
step: 10050 | loss: 2.530633564
step: 10060 | loss: 2.528048646
step: 10070 | loss: 2.525463727
step: 10080 | loss: 2.522878809
step: 10090 | loss: 2.520293890
step: 10100 | loss: 2.517708972
step: 10110 | loss: 2.515124054
step: 10120 | loss: 2.512539135
step: 10130 | loss: 2.509954217
step: 10140 | loss: 2.507369298
step: 10150 | loss: 2.504784380
step: 10160 | loss: 2.502199461
step: 10170 | loss: 2.499614543
step: 10180 | loss: 2.497029624
step: 10190 | loss: 2.494444706
step: 10200 | loss: 2.491859788
step: 10210 | loss: 2.489274869
step: 10220 | loss: 2.486689951
step: 10230 | loss: 2.484105032
step: 10240 | loss: 2.481520114
step: 10250 | loss: 2.478935195
step: 10260 | loss: 2.476350277
step: 10270 | loss: 2.473765358
step: 10280 | loss: 2.471180440
step: 10290 | loss: 2.468595522
step: 10300 | loss: 2.466010603
step: 10310 | loss: 2.463425685
step: 10320 | loss: 2.460840766
step: 10330 | loss: 2.458255848
step: 10340 | loss: 2.455670929
step: 10350 | loss: 2.453086011
step: 10360 | loss: 2.450501093
step: 10370 | loss: 2.447916174
step: 10380 | loss: 2.445331256
step: 10390 | loss: 2.442746337
step: 10400 | loss: 2.440161419
step: 10410 | loss: 2.437576500
step: 10420 | loss: 2.434991582
step: 10430 | loss: 2.432406663
step: 10440 | loss: 2.429821745
step: 10450 | loss: 2.427236827
step: 10460 | loss: 2.424651908
step: 10470 | loss: 2.422066990
step: 10480 | loss: 2.419482071
step: 10490 | loss: 2.416897153
step: 10500 | loss: 2.414312234
step: 10510 | loss: 2.411727316
step: 10520 | loss: 2.409142397
step: 10530 | loss: 2.406557479
step: 10540 | loss: 2.403972561
step: 10550 | loss: 2.401387642
step: 10560 | loss: 2.398802724
step: 10570 | loss: 2.396217805
step: 10580 | loss: 2.393632887
step: 10590 | loss: 2.391047968
step: 10600 | loss: 2.388463050
step: 10610 | loss: 2.385878132
step: 10620 | loss: 2.383293213
step: 10630 | loss: 2.380708295
step: 10640 | loss: 2.378123376
step: 10650 | loss: 2.375538458
step: 10660 | loss: 2.372953539
step: 10670 | loss: 2.370368621
step: 10680 | loss: 2.367783702
step: 10690 | loss: 2.365198784
step: 10700 | loss: 2.362613866
step: 10710 | loss: 2.360028947
step: 10720 | loss: 2.357444029
step: 10730 | loss: 2.354859110
step: 10740 | loss: 2.352274192
step: 10750 | loss: 2.349689273
step: 10760 | loss: 2.347104355
step: 10770 | loss: 2.344519436
step: 10780 | loss: 2.341934518
step: 10790 | loss: 2.339349600
step: 10800 | loss: 2.336764681
step: 10810 | loss: 2.334179763
step: 10820 | loss: 2.331594844
step: 10830 | loss: 2.329009926
step: 10840 | loss: 2.326425007
step: 10850 | loss: 2.323840089
step: 10860 | loss: 2.321255171
step: 10870 | loss: 2.318670252
step: 10880 | loss: 2.316085334
step: 10890 | loss: 2.313500415
step: 10900 | loss: 2.310915497
step: 10910 | loss: 2.308330578
step: 10920 | loss: 2.305745660
step: 10930 | loss: 2.303160741
step: 10940 | loss: 2.300575823
step: 10950 | loss: 2.297990905
step: 10960 | loss: 2.295405986
step: 10970 | loss: 2.292821068
step: 10980 | loss: 2.290236149
step: 10990 | loss: 2.287651231
step: 11000 | loss: 2.285066312
step: 11010 | loss: 2.282481394
step: 11020 | loss: 2.279896476
step: 11030 | loss: 2.277311557
step: 11040 | loss: 2.274726639
step: 11050 | loss: 2.272141720
step: 11060 | loss: 2.269556802
step: 11070 | loss: 2.266971883
step: 11080 | loss: 2.264386965
step: 11090 | loss: 2.261802046
step: 11100 | loss: 2.259217128
step: 11110 | loss: 2.256632210
step: 11120 | loss: 2.254047291
step: 11130 | loss: 2.251462373
step: 11140 | loss: 2.248877454
step: 11150 | loss: 2.246292536
step: 11160 | loss: 2.243707617
step: 11170 | loss: 2.241122699
step: 11180 | loss: 2.238537780
step: 11190 | loss: 2.235952862
step: 11200 | loss: 2.233367944
step: 11210 | loss: 2.230783025
step: 11220 | loss: 2.228198107
step: 11230 | loss: 2.225613188
step: 11240 | loss: 2.223028270
step: 11250 | loss: 2.220443351
step: 11260 | loss: 2.217858433
step: 11270 | loss: 2.215273515
step: 11280 | loss: 2.212688596
step: 11290 | loss: 2.210103678
step: 11300 | loss: 2.207518759
step: 11310 | loss: 2.204933841
step: 11320 | loss: 2.202348922
step: 11330 | loss: 2.199764004
step: 11340 | loss: 2.197179085
step: 11350 | loss: 2.194594167
step: 11360 | loss: 2.192009249
step: 11370 | loss: 2.189424330
step: 11380 | loss: 2.186839412
step: 11390 | loss: 2.184254493
step: 11400 | loss: 2.181669575
step: 11410 | loss: 2.179084656
step: 11420 | loss: 2.176499738
step: 11430 | loss: 2.173914819
step: 11440 | loss: 2.171329901
step: 11450 | loss: 2.168744983
step: 11460 | loss: 2.166160064
step: 11470 | loss: 2.163575146
step: 11480 | loss: 2.160990227
step: 11490 | loss: 2.158405309
step: 11500 | loss: 2.155820390
step: 11510 | loss: 2.153235472
step: 11520 | loss: 2.150650554
step: 11530 | loss: 2.148065635
step: 11540 | loss: 2.145480717
step: 11550 | loss: 2.142895798
step: 11560 | loss: 2.140310880
step: 11570 | loss: 2.137725961
step: 11580 | loss: 2.135141043
step: 11590 | loss: 2.132556124
step: 11600 | loss: 2.129971206
step: 11610 | loss: 2.127386288
step: 11620 | loss: 2.124801369
step: 11630 | loss: 2.122216451
step: 11640 | loss: 2.119631532
step: 11650 | loss: 2.117046614
step: 11660 | loss: 2.114461695
step: 11670 | loss: 2.111876777
step: 11680 | loss: 2.109291858
step: 11690 | loss: 2.106706940
step: 11700 | loss: 2.104122022
step: 11710 | loss: 2.101537103
step: 11720 | loss: 2.098952185
step: 11730 | loss: 2.096367266
step: 11740 | loss: 2.093782348
step: 11750 | loss: 2.091197429
step: 11760 | loss: 2.088612511
step: 11770 | loss: 2.086027593
step: 11780 | loss: 2.083442674
step: 11790 | loss: 2.080857756
step: 11800 | loss: 2.078272837
step: 11810 | loss: 2.075687919
step: 11820 | loss: 2.073103000
step: 11830 | loss: 2.070518082
step: 11840 | loss: 2.067933163
step: 11850 | loss: 2.065348245
step: 11860 | loss: 2.062763327
step: 11870 | loss: 2.060178408
step: 11880 | loss: 2.057593490
step: 11890 | loss: 2.055008571
step: 11900 | loss: 2.052423653
step: 11910 | loss: 2.049838734
step: 11920 | loss: 2.047253816
step: 11930 | loss: 2.044668897
step: 11940 | loss: 2.042083979
step: 11950 | loss: 2.039499061
step: 11960 | loss: 2.036914142
step: 11970 | loss: 2.034329224
step: 11980 | loss: 2.031744305
step: 11990 | loss: 2.029159387
step: 12000 | loss: 2.026574468
step: 12010 | loss: 2.023989550
step: 12020 | loss: 2.021404632
step: 12030 | loss: 2.018819713
step: 12040 | loss: 2.016234795
step: 12050 | loss: 2.013649876
step: 12060 | loss: 2.011064958
step: 12070 | loss: 2.008480039
step: 12080 | loss: 2.005895121
step: 12090 | loss: 2.003310202
step: 12100 | loss: 2.000725284
step: 12110 | loss: 1.998140366
step: 12120 | loss: 1.995555447
step: 12130 | loss: 1.992970529
step: 12140 | loss: 1.990385610
step: 12150 | loss: 1.987800692
step: 12160 | loss: 1.985215773
step: 12170 | loss: 1.982630855
step: 12180 | loss: 1.980045937
step: 12190 | loss: 1.977461018
step: 12200 | loss: 1.974876100
step: 12210 | loss: 1.972291181
step: 12220 | loss: 1.969706263
step: 12230 | loss: 1.967121344
step: 12240 | loss: 1.964536426
step: 12250 | loss: 1.961951507
step: 12260 | loss: 1.959366589
step: 12270 | loss: 1.956781671
step: 12280 | loss: 1.954196752
step: 12290 | loss: 1.951611834
step: 12300 | loss: 1.949026915
step: 12310 | loss: 1.946441997
step: 12320 | loss: 1.943857078
step: 12330 | loss: 1.941272160
step: 12340 | loss: 1.938687241
step: 12350 | loss: 1.936102323
step: 12360 | loss: 1.933517405
step: 12370 | loss: 1.930932486
step: 12380 | loss: 1.928347568
step: 12390 | loss: 1.925762649
step: 12400 | loss: 1.923177731
step: 12410 | loss: 1.920592812
step: 12420 | loss: 1.918007894
step: 12430 | loss: 1.915422976
step: 12440 | loss: 1.912838057
step: 12450 | loss: 1.910253139
step: 12460 | loss: 1.907668220
step: 12470 | loss: 1.905083302
step: 12480 | loss: 1.902498383
step: 12490 | loss: 1.899913465
step: 12500 | loss: 1.897328546
step: 12510 | loss: 1.894743628
step: 12520 | loss: 1.892158710
step: 12530 | loss: 1.889573791
step: 12540 | loss: 1.886988873
step: 12550 | loss: 1.884403954
step: 12560 | loss: 1.881819036
step: 12570 | loss: 1.879234117
step: 12580 | loss: 1.876649199
step: 12590 | loss: 1.874064280
step: 12600 | loss: 1.871479362
step: 12610 | loss: 1.868894444
step: 12620 | loss: 1.866309525
step: 12630 | loss: 1.863724607
step: 12640 | loss: 1.861139688
step: 12650 | loss: 1.858554770
step: 12660 | loss: 1.855969851
step: 12670 | loss: 1.853384933
step: 12680 | loss: 1.850800015
step: 12690 | loss: 1.848215096
step: 12700 | loss: 1.845630178
step: 12710 | loss: 1.843045259
step: 12720 | loss: 1.840460341
step: 12730 | loss: 1.837875422
step: 12740 | loss: 1.835290504
step: 12750 | loss: 1.832705585
step: 12760 | loss: 1.830120667
step: 12770 | loss: 1.827535749
step: 12780 | loss: 1.824950830
step: 12790 | loss: 1.822365912
step: 12800 | loss: 1.819780993
step: 12810 | loss: 1.817196075
step: 12820 | loss: 1.814611156
step: 12830 | loss: 1.812026238
step: 12840 | loss: 1.809441319
step: 12850 | loss: 1.806856401
step: 12860 | loss: 1.804271483
step: 12870 | loss: 1.801686564
step: 12880 | loss: 1.799101646
step: 12890 | loss: 1.796516727
step: 12900 | loss: 1.793931809
step: 12910 | loss: 1.791346890
step: 12920 | loss: 1.788761972
step: 12930 | loss: 1.786177054
step: 12940 | loss: 1.783592135
step: 12950 | loss: 1.781007217
step: 12960 | loss: 1.778422298
step: 12970 | loss: 1.775837380
step: 12980 | loss: 1.773252461
step: 12990 | loss: 1.770667543
step: 13000 | loss: 1.768082624
step: 13010 | loss: 1.765497706
step: 13020 | loss: 1.762912788
step: 13030 | loss: 1.760327869
step: 13040 | loss: 1.757742951
step: 13050 | loss: 1.755158032
step: 13060 | loss: 1.752573114
step: 13070 | loss: 1.749988195
step: 13080 | loss: 1.747403277
step: 13090 | loss: 1.744818358
step: 13100 | loss: 1.742233440
step: 13110 | loss: 1.739648522
step: 13120 | loss: 1.737063603
step: 13130 | loss: 1.734478685
step: 13140 | loss: 1.731893766
step: 13150 | loss: 1.729308848
step: 13160 | loss: 1.726723929
step: 13170 | loss: 1.724139011
step: 13180 | loss: 1.721554093
step: 13190 | loss: 1.718969174
step: 13200 | loss: 1.716384256
step: 13210 | loss: 1.713799337
step: 13220 | loss: 1.711214419
step: 13230 | loss: 1.708629500
step: 13240 | loss: 1.706044582
step: 13250 | loss: 1.703459663
step: 13260 | loss: 1.700874745
step: 13270 | loss: 1.698289827
step: 13280 | loss: 1.695704908
step: 13290 | loss: 1.693119990
step: 13300 | loss: 1.690535071
step: 13310 | loss: 1.687950153
step: 13320 | loss: 1.685365234
step: 13330 | loss: 1.682780316
step: 13340 | loss: 1.680195397
step: 13350 | loss: 1.677610479
step: 13360 | loss: 1.675025561
step: 13370 | loss: 1.672440642
step: 13380 | loss: 1.669855724
step: 13390 | loss: 1.667270805
step: 13400 | loss: 1.664685887
step: 13410 | loss: 1.662100968
step: 13420 | loss: 1.659516050
step: 13430 | loss: 1.656931132
step: 13440 | loss: 1.654346213
step: 13450 | loss: 1.651761295
step: 13460 | loss: 1.649176376
step: 13470 | loss: 1.646591458
step: 13480 | loss: 1.644006539
step: 13490 | loss: 1.641421621
step: 13500 | loss: 1.638836702
step: 13510 | loss: 1.636251784
step: 13520 | loss: 1.633666866
step: 13530 | loss: 1.631081947
step: 13540 | loss: 1.628497029
step: 13550 | loss: 1.625912110
step: 13560 | loss: 1.623327192
step: 13570 | loss: 1.620742273
step: 13580 | loss: 1.618157355
step: 13590 | loss: 1.615572437
step: 13600 | loss: 1.612987518
step: 13610 | loss: 1.610402600
step: 13620 | loss: 1.607817681
step: 13630 | loss: 1.605232763
step: 13640 | loss: 1.602647844
step: 13650 | loss: 1.600062926
step: 13660 | loss: 1.597478007
step: 13670 | loss: 1.594893089
step: 13680 | loss: 1.592308171
step: 13690 | loss: 1.589723252
step: 13700 | loss: 1.587138334
step: 13710 | loss: 1.584553415
step: 13720 | loss: 1.581968497
step: 13730 | loss: 1.579383578
step: 13740 | loss: 1.576798660
step: 13750 | loss: 1.574213741
step: 13760 | loss: 1.571628823
step: 13770 | loss: 1.569043905
step: 13780 | loss: 1.566458986
step: 13790 | loss: 1.563874068
step: 13800 | loss: 1.561289149
step: 13810 | loss: 1.558704231
step: 13820 | loss: 1.556119312
step: 13830 | loss: 1.553534394
step: 13840 | loss: 1.550949476
step: 13850 | loss: 1.548364557
step: 13860 | loss: 1.545779639
step: 13870 | loss: 1.543194720
step: 13880 | loss: 1.540609802
step: 13890 | loss: 1.538024883
step: 13900 | loss: 1.535439965
step: 13910 | loss: 1.532855046
step: 13920 | loss: 1.530270128
step: 13930 | loss: 1.527685210
step: 13940 | loss: 1.525100291
step: 13950 | loss: 1.522515373
step: 13960 | loss: 1.519930454
step: 13970 | loss: 1.517345536
step: 13980 | loss: 1.514760617
step: 13990 | loss: 1.512175699
step: 14000 | loss: 1.509590780
step: 14010 | loss: 1.507005862
step: 14020 | loss: 1.504420944
step: 14030 | loss: 1.501836025
step: 14040 | loss: 1.499251107
step: 14050 | loss: 1.496666188
step: 14060 | loss: 1.494081270
step: 14070 | loss: 1.491496351
step: 14080 | loss: 1.488911433
step: 14090 | loss: 1.486326515
step: 14100 | loss: 1.483741596
step: 14110 | loss: 1.481156678
step: 14120 | loss: 1.478571759
step: 14130 | loss: 1.475986841
step: 14140 | loss: 1.473401922
step: 14150 | loss: 1.470817004
step: 14160 | loss: 1.468232085
step: 14170 | loss: 1.465647167
step: 14180 | loss: 1.463062249
step: 14190 | loss: 1.460477330
step: 14200 | loss: 1.457892412
step: 14210 | loss: 1.455307493
step: 14220 | loss: 1.452722575
step: 14230 | loss: 1.450137656
step: 14240 | loss: 1.447552738
step: 14250 | loss: 1.444967819
step: 14260 | loss: 1.442382901
step: 14270 | loss: 1.439797983
step: 14280 | loss: 1.437213064
step: 14290 | loss: 1.434628146
step: 14300 | loss: 1.432043227
step: 14310 | loss: 1.429458309
step: 14320 | loss: 1.426873390
step: 14330 | loss: 1.424288472
step: 14340 | loss: 1.421703554
step: 14350 | loss: 1.419118635
step: 14360 | loss: 1.416533717
step: 14370 | loss: 1.413948798
step: 14380 | loss: 1.411363880
step: 14390 | loss: 1.408778961
step: 14400 | loss: 1.406194043
step: 14410 | loss: 1.403609124
step: 14420 | loss: 1.401024206
step: 14430 | loss: 1.398439288
step: 14440 | loss: 1.395854369
step: 14450 | loss: 1.393269451
step: 14460 | loss: 1.390684532
step: 14470 | loss: 1.388099614
step: 14480 | loss: 1.385514695
step: 14490 | loss: 1.382929777
step: 14500 | loss: 1.380344858
step: 14510 | loss: 1.377759940
step: 14520 | loss: 1.375175022
step: 14530 | loss: 1.372590103
step: 14540 | loss: 1.370005185
step: 14550 | loss: 1.367420266
step: 14560 | loss: 1.364835348
step: 14570 | loss: 1.362250429
step: 14580 | loss: 1.359665511
step: 14590 | loss: 1.357080593
step: 14600 | loss: 1.354495674
step: 14610 | loss: 1.351910756
step: 14620 | loss: 1.349325837
step: 14630 | loss: 1.346740919
step: 14640 | loss: 1.344156000
step: 14650 | loss: 1.341571082
step: 14660 | loss: 1.338986163
step: 14670 | loss: 1.336401245
step: 14680 | loss: 1.333816327
step: 14690 | loss: 1.331231408
step: 14700 | loss: 1.328646490
step: 14710 | loss: 1.326061571
step: 14720 | loss: 1.323476653
step: 14730 | loss: 1.320891734
step: 14740 | loss: 1.318306816
step: 14750 | loss: 1.315721898
step: 14760 | loss: 1.313136979
step: 14770 | loss: 1.310552061
step: 14780 | loss: 1.307967142
step: 14790 | loss: 1.305382224
step: 14800 | loss: 1.302797305
step: 14810 | loss: 1.300212387
step: 14820 | loss: 1.297627468
step: 14830 | loss: 1.295042550
step: 14840 | loss: 1.292457632
step: 14850 | loss: 1.289872713
step: 14860 | loss: 1.287287795
step: 14870 | loss: 1.284702876
step: 14880 | loss: 1.282117958
step: 14890 | loss: 1.279533039
step: 14900 | loss: 1.276948121
step: 14910 | loss: 1.274363202
step: 14920 | loss: 1.271778284
step: 14930 | loss: 1.269193366
step: 14940 | loss: 1.266608447
step: 14950 | loss: 1.264023529
step: 14960 | loss: 1.261438610
step: 14970 | loss: 1.258853692
step: 14980 | loss: 1.256268773
step: 14990 | loss: 1.253683855
step: 15000 | loss: 1.251098937
step: 15010 | loss: 1.248514018
step: 15020 | loss: 1.245929100
step: 15030 | loss: 1.243344181
step: 15040 | loss: 1.240759263
step: 15050 | loss: 1.238174344
step: 15060 | loss: 1.235589426
step: 15070 | loss: 1.233004507
step: 15080 | loss: 1.230419589
step: 15090 | loss: 1.227834671
step: 15100 | loss: 1.225249752
step: 15110 | loss: 1.222664834
step: 15120 | loss: 1.220079915
step: 15130 | loss: 1.217494997
step: 15140 | loss: 1.214910078
step: 15150 | loss: 1.212325160
step: 15160 | loss: 1.209740241
step: 15170 | loss: 1.207155323
step: 15180 | loss: 1.204570405
step: 15190 | loss: 1.201985486
step: 15200 | loss: 1.199400568
step: 15210 | loss: 1.196815649
step: 15220 | loss: 1.194230731
step: 15230 | loss: 1.191645812
step: 15240 | loss: 1.189060894
step: 15250 | loss: 1.186475976
step: 15260 | loss: 1.183891057
step: 15270 | loss: 1.181306139
step: 15280 | loss: 1.178721220
step: 15290 | loss: 1.176136302
step: 15300 | loss: 1.173551383
step: 15310 | loss: 1.170966465
step: 15320 | loss: 1.168381546
step: 15330 | loss: 1.165796628
step: 15340 | loss: 1.163211710
step: 15350 | loss: 1.160626791
step: 15360 | loss: 1.158041873
step: 15370 | loss: 1.155456954
step: 15380 | loss: 1.152872036
step: 15390 | loss: 1.150287117
step: 15400 | loss: 1.147702199
step: 15410 | loss: 1.145117280
step: 15420 | loss: 1.142532362
step: 15430 | loss: 1.139947444
step: 15440 | loss: 1.137362525
step: 15450 | loss: 1.134777607
step: 15460 | loss: 1.132192688
step: 15470 | loss: 1.129607770
step: 15480 | loss: 1.127022851
step: 15490 | loss: 1.124437933
step: 15500 | loss: 1.121853015
step: 15510 | loss: 1.119268096
step: 15520 | loss: 1.116683178
step: 15530 | loss: 1.114098259
step: 15540 | loss: 1.111513341
step: 15550 | loss: 1.108928422
step: 15560 | loss: 1.106343504
step: 15570 | loss: 1.103758585
step: 15580 | loss: 1.101173667
step: 15590 | loss: 1.098588749
step: 15600 | loss: 1.096003830
step: 15610 | loss: 1.093418912
step: 15620 | loss: 1.090833993
step: 15630 | loss: 1.088249075
step: 15640 | loss: 1.085664156
step: 15650 | loss: 1.083079238
step: 15660 | loss: 1.080494319
step: 15670 | loss: 1.077909401
step: 15680 | loss: 1.075324483
step: 15690 | loss: 1.072739564
step: 15700 | loss: 1.070154646
step: 15710 | loss: 1.067569727
step: 15720 | loss: 1.064984809
step: 15730 | loss: 1.062399890
step: 15740 | loss: 1.059814972
step: 15750 | loss: 1.057230054
step: 15760 | loss: 1.054645135
step: 15770 | loss: 1.052060217
step: 15780 | loss: 1.049475298
step: 15790 | loss: 1.046890380
step: 15800 | loss: 1.044305461
step: 15810 | loss: 1.041720543
step: 15820 | loss: 1.039135624
step: 15830 | loss: 1.036550706
step: 15840 | loss: 1.033965788
step: 15850 | loss: 1.031380869
step: 15860 | loss: 1.028795951
step: 15870 | loss: 1.026211032
step: 15880 | loss: 1.023626114
step: 15890 | loss: 1.021041195
step: 15900 | loss: 1.018456277
step: 15910 | loss: 1.015871358
step: 15920 | loss: 1.013286440
step: 15930 | loss: 1.010701522
step: 15940 | loss: 1.008116603
step: 15950 | loss: 1.005531685
step: 15960 | loss: 1.002946766
step: 15970 | loss: 1.000361848
step: 15980 | loss: 0.997776929
step: 15990 | loss: 0.995192011
step: 16000 | loss: 0.992607093
step: 16010 | loss: 0.990022174
step: 16020 | loss: 0.987437256
step: 16030 | loss: 0.984852337
step: 16040 | loss: 0.982267419
step: 16050 | loss: 0.979682500
step: 16060 | loss: 0.977097582
step: 16070 | loss: 0.974512663
step: 16080 | loss: 0.971927745
step: 16090 | loss: 0.969342827
step: 16100 | loss: 0.966757908
step: 16110 | loss: 0.964172990
step: 16120 | loss: 0.961588071
step: 16130 | loss: 0.959003153
step: 16140 | loss: 0.956418234
step: 16150 | loss: 0.953833316
step: 16160 | loss: 0.951248398
step: 16170 | loss: 0.948663479
step: 16180 | loss: 0.946078561
step: 16190 | loss: 0.943493642
step: 16200 | loss: 0.940908724
step: 16210 | loss: 0.938323805
step: 16220 | loss: 0.935738887
step: 16230 | loss: 0.933153968
step: 16240 | loss: 0.930569050
step: 16250 | loss: 0.927984132
step: 16260 | loss: 0.925399213
step: 16270 | loss: 0.922814295
step: 16280 | loss: 0.920229376
step: 16290 | loss: 0.917644458
step: 16300 | loss: 0.915059539
step: 16310 | loss: 0.912474621
step: 16320 | loss: 0.909889702
step: 16330 | loss: 0.907304784
step: 16340 | loss: 0.904719866
step: 16350 | loss: 0.902134947
step: 16360 | loss: 0.899550029
step: 16370 | loss: 0.896965110
step: 16380 | loss: 0.894380192
step: 16390 | loss: 0.891795273
step: 16400 | loss: 0.889210355
step: 16410 | loss: 0.886625437
step: 16420 | loss: 0.884040518
step: 16430 | loss: 0.881455600
step: 16440 | loss: 0.878870681
step: 16450 | loss: 0.876285763
step: 16460 | loss: 0.873700844
step: 16470 | loss: 0.871115926
step: 16480 | loss: 0.868531007
step: 16490 | loss: 0.865946089
step: 16500 | loss: 0.863361171
step: 16510 | loss: 0.860776252
step: 16520 | loss: 0.858191334
step: 16530 | loss: 0.855606415
step: 16540 | loss: 0.853021497
step: 16550 | loss: 0.850436578
step: 16560 | loss: 0.847851660
step: 16570 | loss: 0.845266741
step: 16580 | loss: 0.842681823
step: 16590 | loss: 0.840096905
step: 16600 | loss: 0.837511986
step: 16610 | loss: 0.834927068
step: 16620 | loss: 0.832342149
step: 16630 | loss: 0.829757231
step: 16640 | loss: 0.827172312
step: 16650 | loss: 0.824587394
step: 16660 | loss: 0.822002476
step: 16670 | loss: 0.819417557
step: 16680 | loss: 0.816832639
step: 16690 | loss: 0.814247720
step: 16700 | loss: 0.811662802
step: 16710 | loss: 0.809077883
step: 16720 | loss: 0.806492965
step: 16730 | loss: 0.803908046
step: 16740 | loss: 0.801323128
step: 16750 | loss: 0.798738210
step: 16760 | loss: 0.796153291
step: 16770 | loss: 0.793568373
step: 16780 | loss: 0.790983454
step: 16790 | loss: 0.788398536
step: 16800 | loss: 0.785813617
step: 16810 | loss: 0.783228699
step: 16820 | loss: 0.780643780
step: 16830 | loss: 0.778058862
step: 16840 | loss: 0.775473944
step: 16850 | loss: 0.772889025
step: 16860 | loss: 0.770304107
step: 16870 | loss: 0.767719188
step: 16880 | loss: 0.765134270
step: 16890 | loss: 0.762549351
step: 16900 | loss: 0.759964433
step: 16910 | loss: 0.757379515
step: 16920 | loss: 0.754794596
step: 16930 | loss: 0.752209678
step: 16940 | loss: 0.749624759
step: 16950 | loss: 0.747039841
step: 16960 | loss: 0.744454922
step: 16970 | loss: 0.741870004
step: 16980 | loss: 0.739285085
step: 16990 | loss: 0.736700167
step: 17000 | loss: 0.734115249
step: 17010 | loss: 0.731530330
step: 17020 | loss: 0.728945412
step: 17030 | loss: 0.726360493
step: 17040 | loss: 0.723775575
step: 17050 | loss: 0.721190656
step: 17060 | loss: 0.718605738
step: 17070 | loss: 0.716020819
step: 17080 | loss: 0.713435901
step: 17090 | loss: 0.710850983
step: 17100 | loss: 0.708266064
step: 17110 | loss: 0.705681146
step: 17120 | loss: 0.703096227
step: 17130 | loss: 0.700511309
step: 17140 | loss: 0.697926390
step: 17150 | loss: 0.695341472
step: 17160 | loss: 0.692756554
step: 17170 | loss: 0.690171635
step: 17180 | loss: 0.687586717
step: 17190 | loss: 0.685001798
step: 17200 | loss: 0.682416880
step: 17210 | loss: 0.679831961
step: 17220 | loss: 0.677247043
step: 17230 | loss: 0.674662124
step: 17240 | loss: 0.672077206
step: 17250 | loss: 0.669492288
step: 17260 | loss: 0.666907369
step: 17270 | loss: 0.664322451
step: 17280 | loss: 0.661737532
step: 17290 | loss: 0.659152614
step: 17300 | loss: 0.656567695
step: 17310 | loss: 0.653982777
step: 17320 | loss: 0.651397859
step: 17330 | loss: 0.648812940
step: 17340 | loss: 0.646228022
step: 17350 | loss: 0.643643103
step: 17360 | loss: 0.641058185
step: 17370 | loss: 0.638473266
step: 17380 | loss: 0.635888348
step: 17390 | loss: 0.633303429
step: 17400 | loss: 0.630718511
step: 17410 | loss: 0.628133593
step: 17420 | loss: 0.625548674
step: 17430 | loss: 0.622963756
step: 17440 | loss: 0.620378837
step: 17450 | loss: 0.617793919
step: 17460 | loss: 0.615209000
step: 17470 | loss: 0.612624082
step: 17480 | loss: 0.610039163
step: 17490 | loss: 0.607454245
step: 17500 | loss: 0.604869327
step: 17510 | loss: 0.602284408
step: 17520 | loss: 0.599699490
step: 17530 | loss: 0.597114571
step: 17540 | loss: 0.594529653
step: 17550 | loss: 0.591944734
step: 17560 | loss: 0.589359816
step: 17570 | loss: 0.586774898
step: 17580 | loss: 0.584189979
step: 17590 | loss: 0.581605061
step: 17600 | loss: 0.579020142
step: 17610 | loss: 0.576435224
step: 17620 | loss: 0.573850305
step: 17630 | loss: 0.571265387
step: 17640 | loss: 0.568680468
step: 17650 | loss: 0.566095550
step: 17660 | loss: 0.563510632
step: 17670 | loss: 0.560925713
step: 17680 | loss: 0.558340795
step: 17690 | loss: 0.555755876
step: 17700 | loss: 0.553170958
step: 17710 | loss: 0.550586039
step: 17720 | loss: 0.548001121
step: 17730 | loss: 0.545416202
step: 17740 | loss: 0.542831284
step: 17750 | loss: 0.540246366
step: 17760 | loss: 0.537661447
step: 17770 | loss: 0.535076529
step: 17780 | loss: 0.532491610
step: 17790 | loss: 0.529906692
step: 17800 | loss: 0.527321773
step: 17810 | loss: 0.524736855
step: 17820 | loss: 0.522151937
step: 17830 | loss: 0.519567018
step: 17840 | loss: 0.516982100
step: 17850 | loss: 0.514397181
step: 17860 | loss: 0.511812263
step: 17870 | loss: 0.509227344
step: 17880 | loss: 0.506642426
step: 17890 | loss: 0.504057507
step: 17900 | loss: 0.501472589
step: 17910 | loss: 0.498887671
step: 17920 | loss: 0.496302752
step: 17930 | loss: 0.493717834
step: 17940 | loss: 0.491132915
step: 17950 | loss: 0.488547997
step: 17960 | loss: 0.485963078
step: 17970 | loss: 0.483378160
step: 17980 | loss: 0.480793241
step: 17990 | loss: 0.478208323
step: 18000 | loss: 0.475623405
step: 18010 | loss: 0.473038486
step: 18020 | loss: 0.470453568
step: 18030 | loss: 0.467868649
step: 18040 | loss: 0.465283731
step: 18050 | loss: 0.462698812
step: 18060 | loss: 0.460113894
step: 18070 | loss: 0.457528976
step: 18080 | loss: 0.454944057
step: 18090 | loss: 0.452359139
step: 18100 | loss: 0.449774220
step: 18110 | loss: 0.447189302
step: 18120 | loss: 0.444604383
step: 18130 | loss: 0.442019465
step: 18140 | loss: 0.439434546
step: 18150 | loss: 0.436849628
step: 18160 | loss: 0.434264710
step: 18170 | loss: 0.431679791
step: 18180 | loss: 0.429094873
step: 18190 | loss: 0.426509954
step: 18200 | loss: 0.423925036
step: 18210 | loss: 0.421340117
step: 18220 | loss: 0.418755199
step: 18230 | loss: 0.416170280
step: 18240 | loss: 0.413585362
step: 18250 | loss: 0.411000444
step: 18260 | loss: 0.408415525
step: 18270 | loss: 0.405830607
step: 18280 | loss: 0.403245688
step: 18290 | loss: 0.400660770
step: 18300 | loss: 0.398075851
step: 18310 | loss: 0.395490933
step: 18320 | loss: 0.392906015
step: 18330 | loss: 0.390321096
step: 18340 | loss: 0.387736178
step: 18350 | loss: 0.385151259
step: 18360 | loss: 0.382566341
step: 18370 | loss: 0.379981422
step: 18380 | loss: 0.377396504
step: 18390 | loss: 0.374811585
step: 18400 | loss: 0.372226667
step: 18410 | loss: 0.369641749
step: 18420 | loss: 0.367056830
step: 18430 | loss: 0.364471912
step: 18440 | loss: 0.361886993
step: 18450 | loss: 0.359302075
step: 18460 | loss: 0.356717156
step: 18470 | loss: 0.354132238
step: 18480 | loss: 0.351547319
step: 18490 | loss: 0.348962401
step: 18500 | loss: 0.346377483
step: 18510 | loss: 0.343792564
step: 18520 | loss: 0.341207646
step: 18530 | loss: 0.338622727
step: 18540 | loss: 0.336037809
step: 18550 | loss: 0.333452890
step: 18560 | loss: 0.330867972
step: 18570 | loss: 0.328283054
step: 18580 | loss: 0.325698135
step: 18590 | loss: 0.323113217
step: 18600 | loss: 0.320528298
step: 18610 | loss: 0.317943380
step: 18620 | loss: 0.315358461
step: 18630 | loss: 0.312773543
step: 18640 | loss: 0.310188624
step: 18650 | loss: 0.307603706
step: 18660 | loss: 0.305018788
step: 18670 | loss: 0.302433869
step: 18680 | loss: 0.299848951
step: 18690 | loss: 0.297264032
step: 18700 | loss: 0.294679114
step: 18710 | loss: 0.292094195
step: 18720 | loss: 0.289509277
step: 18730 | loss: 0.286924359
step: 18740 | loss: 0.284339440
step: 18750 | loss: 0.281754522
step: 18760 | loss: 0.279169603
step: 18770 | loss: 0.276584685
step: 18780 | loss: 0.273999766
step: 18790 | loss: 0.271414848
step: 18800 | loss: 0.268829929
step: 18810 | loss: 0.266245011
step: 18820 | loss: 0.263660093
step: 18830 | loss: 0.261075174
step: 18840 | loss: 0.258490256
step: 18850 | loss: 0.255905337
step: 18860 | loss: 0.253320419
step: 18870 | loss: 0.250735500
step: 18880 | loss: 0.248150582
step: 18890 | loss: 0.245565663
step: 18900 | loss: 0.242980745
step: 18910 | loss: 0.240395827
step: 18920 | loss: 0.237810908
step: 18930 | loss: 0.235225990
step: 18940 | loss: 0.232641071
step: 18950 | loss: 0.230056153
step: 18960 | loss: 0.227471234
step: 18970 | loss: 0.224886316
step: 18980 | loss: 0.222301398
step: 18990 | loss: 0.219716479
step: 19000 | loss: 0.217131561
step: 19010 | loss: 0.214546642
step: 19020 | loss: 0.211961724
step: 19030 | loss: 0.209376805
step: 19040 | loss: 0.206791887
step: 19050 | loss: 0.204206968
step: 19060 | loss: 0.201622050
step: 19070 | loss: 0.199037132
step: 19080 | loss: 0.196452213
step: 19090 | loss: 0.193867295
step: 19100 | loss: 0.191282376
step: 19110 | loss: 0.188697458
step: 19120 | loss: 0.186112539
step: 19130 | loss: 0.183527621
step: 19140 | loss: 0.180942702
step: 19150 | loss: 0.178357784
step: 19160 | loss: 0.175772866
step: 19170 | loss: 0.173187947
step: 19180 | loss: 0.170603029
step: 19190 | loss: 0.168018110
step: 19200 | loss: 0.165433192
step: 19210 | loss: 0.162848273
step: 19220 | loss: 0.160263355
step: 19230 | loss: 0.157678437
step: 19240 | loss: 0.155093518
step: 19250 | loss: 0.152508600
step: 19260 | loss: 0.149923681
step: 19270 | loss: 0.147338763
step: 19280 | loss: 0.144753844
step: 19290 | loss: 0.142168926
step: 19300 | loss: 0.139584007
step: 19310 | loss: 0.136999089
step: 19320 | loss: 0.134414171
step: 19330 | loss: 0.131829252
step: 19340 | loss: 0.129244334
step: 19350 | loss: 0.126659415
step: 19360 | loss: 0.124074497
step: 19370 | loss: 0.121489578
step: 19380 | loss: 0.118904660
step: 19390 | loss: 0.116319741
step: 19400 | loss: 0.113734823
step: 19410 | loss: 0.111149905
step: 19420 | loss: 0.108564986
step: 19430 | loss: 0.105980068
step: 19440 | loss: 0.103395149
step: 19450 | loss: 0.100810231
step: 19460 | loss: 0.098225312
step: 19470 | loss: 0.095640394
step: 19480 | loss: 0.093055476
step: 19490 | loss: 0.090470557
step: 19500 | loss: 0.087885639
step: 19510 | loss: 0.085300720
step: 19520 | loss: 0.082715802
step: 19530 | loss: 0.080130883
step: 19540 | loss: 0.077545965
step: 19550 | loss: 0.074961046
step: 19560 | loss: 0.072376128
step: 19570 | loss: 0.069791210
step: 19580 | loss: 0.067206291
step: 19590 | loss: 0.064621373
step: 19600 | loss: 0.062036454
step: 19610 | loss: 0.059451536
step: 19620 | loss: 0.056866617
step: 19630 | loss: 0.054281699
step: 19640 | loss: 0.051696780
step: 19650 | loss: 0.049111862
step: 19660 | loss: 0.046526944
step: 19670 | loss: 0.043942025
step: 19680 | loss: 0.041357107
step: 19690 | loss: 0.038772188
step: 19700 | loss: 0.036187270
step: 19710 | loss: 0.033602351
step: 19720 | loss: 0.031017433
step: 19730 | loss: 0.028432515
step: 19740 | loss: 0.025847596
step: 19750 | loss: 0.023262678
step: 19760 | loss: 0.020677759
step: 19770 | loss: 0.018092841
step: 19780 | loss: 0.015507922
step: 19790 | loss: 0.012923004
step: 19800 | loss: 0.010338085
step: 19810 | loss: 0.007753167
step: 19820 | loss: 0.005168249
step: 19830 | loss: 0.002583330
- final loss: 0.000774
- (cd _build/default/examples/opt && ./adam.exe)
- 
step: 0 | loss: 5.838398098
step: 10 | loss: 5.834887326
step: 20 | loss: 5.830990134
step: 30 | loss: 5.827097205
step: 40 | loss: 5.823208786
step: 50 | loss: 5.819324981
step: 60 | loss: 5.815445793
step: 70 | loss: 5.811571171
step: 80 | loss: 5.807701037
step: 90 | loss: 5.803835301
step: 100 | loss: 5.799973867
step: 110 | loss: 5.796116639
step: 120 | loss: 5.792263520
step: 130 | loss: 5.788414414
step: 140 | loss: 5.784569227
step: 150 | loss: 5.780727866
step: 160 | loss: 5.776890243
step: 170 | loss: 5.773056269
step: 180 | loss: 5.769225860
step: 190 | loss: 5.765398935
step: 200 | loss: 5.761575415
step: 210 | loss: 5.757755226
step: 220 | loss: 5.753938297
step: 230 | loss: 5.750124560
step: 240 | loss: 5.746313952
step: 250 | loss: 5.742506412
step: 260 | loss: 5.738701883
step: 270 | loss: 5.734900313
step: 280 | loss: 5.731101651
step: 290 | loss: 5.727305851
step: 300 | loss: 5.723512869
step: 310 | loss: 5.719722663
step: 320 | loss: 5.715935196
step: 330 | loss: 5.712150431
step: 340 | loss: 5.708368334
step: 350 | loss: 5.704588872
step: 360 | loss: 5.700812014
step: 370 | loss: 5.697037732
step: 380 | loss: 5.693265998
step: 390 | loss: 5.689496784
step: 400 | loss: 5.685730064
step: 410 | loss: 5.681965814
step: 420 | loss: 5.678204009
step: 430 | loss: 5.674444625
step: 440 | loss: 5.670687639
step: 450 | loss: 5.666933027
step: 460 | loss: 5.663180767
step: 470 | loss: 5.659430836
step: 480 | loss: 5.655683213
step: 490 | loss: 5.651937875
step: 500 | loss: 5.648194800
step: 510 | loss: 5.644453967
step: 520 | loss: 5.640715354
step: 530 | loss: 5.636978939
step: 540 | loss: 5.633244701
step: 550 | loss: 5.629512618
step: 560 | loss: 5.625782670
step: 570 | loss: 5.622054834
step: 580 | loss: 5.618329090
step: 590 | loss: 5.614605416
step: 600 | loss: 5.610883791
step: 610 | loss: 5.607164194
step: 620 | loss: 5.603446604
step: 630 | loss: 5.599731000
step: 640 | loss: 5.596017361
step: 650 | loss: 5.592305665
step: 660 | loss: 5.588595893
step: 670 | loss: 5.584888022
step: 680 | loss: 5.581182033
step: 690 | loss: 5.577477905
step: 700 | loss: 5.573775617
step: 710 | loss: 5.570075147
step: 720 | loss: 5.566376477
step: 730 | loss: 5.562679585
step: 740 | loss: 5.558984451
step: 750 | loss: 5.555291055
step: 760 | loss: 5.551599376
step: 770 | loss: 5.547909394
step: 780 | loss: 5.544221089
step: 790 | loss: 5.540534442
step: 800 | loss: 5.536849431
step: 810 | loss: 5.533166038
step: 820 | loss: 5.529484242
step: 830 | loss: 5.525804025
step: 840 | loss: 5.522125366
step: 850 | loss: 5.518448246
step: 860 | loss: 5.514772645
step: 870 | loss: 5.511098545
step: 880 | loss: 5.507425927
step: 890 | loss: 5.503754771
step: 900 | loss: 5.500085058
step: 910 | loss: 5.496416770
step: 920 | loss: 5.492749888
step: 930 | loss: 5.489084394
step: 940 | loss: 5.485420269
step: 950 | loss: 5.481757494
step: 960 | loss: 5.478096053
step: 970 | loss: 5.474435926
step: 980 | loss: 5.470777097
step: 990 | loss: 5.467119546
step: 1000 | loss: 5.463463258
step: 1010 | loss: 5.459808213
step: 1020 | loss: 5.456154396
step: 1030 | loss: 5.452501788
step: 1040 | loss: 5.448850373
step: 1050 | loss: 5.445200134
step: 1060 | loss: 5.441551055
step: 1070 | loss: 5.437903118
step: 1080 | loss: 5.434256308
step: 1090 | loss: 5.430610608
step: 1100 | loss: 5.426966002
step: 1110 | loss: 5.423322475
step: 1120 | loss: 5.419680010
step: 1130 | loss: 5.416038593
step: 1140 | loss: 5.412398207
step: 1150 | loss: 5.408758838
step: 1160 | loss: 5.405120470
step: 1170 | loss: 5.401483089
step: 1180 | loss: 5.397846680
step: 1190 | loss: 5.394211228
step: 1200 | loss: 5.390576720
step: 1210 | loss: 5.386943140
step: 1220 | loss: 5.383310476
step: 1230 | loss: 5.379678713
step: 1240 | loss: 5.376047837
step: 1250 | loss: 5.372417835
step: 1260 | loss: 5.368788694
step: 1270 | loss: 5.365160401
step: 1280 | loss: 5.361532943
step: 1290 | loss: 5.357906306
step: 1300 | loss: 5.354280479
step: 1310 | loss: 5.350655450
step: 1320 | loss: 5.347031205
step: 1330 | loss: 5.343407733
step: 1340 | loss: 5.339785022
step: 1350 | loss: 5.336163061
step: 1360 | loss: 5.332541838
step: 1370 | loss: 5.328921341
step: 1380 | loss: 5.325301559
step: 1390 | loss: 5.321682482
step: 1400 | loss: 5.318064099
step: 1410 | loss: 5.314446399
step: 1420 | loss: 5.310829371
step: 1430 | loss: 5.307213006
step: 1440 | loss: 5.303597293
step: 1450 | loss: 5.299982222
step: 1460 | loss: 5.296367784
step: 1470 | loss: 5.292753969
step: 1480 | loss: 5.289140768
step: 1490 | loss: 5.285528170
step: 1500 | loss: 5.281916168
step: 1510 | loss: 5.278304752
step: 1520 | loss: 5.274693914
step: 1530 | loss: 5.271083645
step: 1540 | loss: 5.267473935
step: 1550 | loss: 5.263864778
step: 1560 | loss: 5.260256165
step: 1570 | loss: 5.256648088
step: 1580 | loss: 5.253040539
step: 1590 | loss: 5.249433510
step: 1600 | loss: 5.245826995
step: 1610 | loss: 5.242220984
step: 1620 | loss: 5.238615472
step: 1630 | loss: 5.235010451
step: 1640 | loss: 5.231405914
step: 1650 | loss: 5.227801855
step: 1660 | loss: 5.224198266
step: 1670 | loss: 5.220595141
step: 1680 | loss: 5.216992473
step: 1690 | loss: 5.213390258
step: 1700 | loss: 5.209788487
step: 1710 | loss: 5.206187156
step: 1720 | loss: 5.202586257
step: 1730 | loss: 5.198985787
step: 1740 | loss: 5.195385738
step: 1750 | loss: 5.191786106
step: 1760 | loss: 5.188186885
step: 1770 | loss: 5.184588069
step: 1780 | loss: 5.180989654
step: 1790 | loss: 5.177391635
step: 1800 | loss: 5.173794006
step: 1810 | loss: 5.170196763
step: 1820 | loss: 5.166599901
step: 1830 | loss: 5.163003415
step: 1840 | loss: 5.159407302
step: 1850 | loss: 5.155811556
step: 1860 | loss: 5.152216174
step: 1870 | loss: 5.148621151
step: 1880 | loss: 5.145026483
step: 1890 | loss: 5.141432166
step: 1900 | loss: 5.137838197
step: 1910 | loss: 5.134244571
step: 1920 | loss: 5.130651285
step: 1930 | loss: 5.127058335
step: 1940 | loss: 5.123465718
step: 1950 | loss: 5.119873431
step: 1960 | loss: 5.116281470
step: 1970 | loss: 5.112689832
step: 1980 | loss: 5.109098513
step: 1990 | loss: 5.105507512
step: 2000 | loss: 5.101916824
step: 2010 | loss: 5.098326447
step: 2020 | loss: 5.094736379
step: 2030 | loss: 5.091146616
step: 2040 | loss: 5.087557156
step: 2050 | loss: 5.083967996
step: 2060 | loss: 5.080379134
step: 2070 | loss: 5.076790567
step: 2080 | loss: 5.073202293
step: 2090 | loss: 5.069614311
step: 2100 | loss: 5.066026617
step: 2110 | loss: 5.062439209
step: 2120 | loss: 5.058852086
step: 2130 | loss: 5.055265246
step: 2140 | loss: 5.051678686
step: 2150 | loss: 5.048092405
step: 2160 | loss: 5.044506401
step: 2170 | loss: 5.040920673
step: 2180 | loss: 5.037335217
step: 2190 | loss: 5.033750034
step: 2200 | loss: 5.030165122
step: 2210 | loss: 5.026580478
step: 2220 | loss: 5.022996102
step: 2230 | loss: 5.019411992
step: 2240 | loss: 5.015828146
step: 2250 | loss: 5.012244565
step: 2260 | loss: 5.008661245
step: 2270 | loss: 5.005078187
step: 2280 | loss: 5.001495389
step: 2290 | loss: 4.997912850
step: 2300 | loss: 4.994330569
step: 2310 | loss: 4.990748545
step: 2320 | loss: 4.987166776
step: 2330 | loss: 4.983585263
step: 2340 | loss: 4.980004005
step: 2350 | loss: 4.976422999
step: 2360 | loss: 4.972842247
step: 2370 | loss: 4.969261746
step: 2380 | loss: 4.965681497
step: 2390 | loss: 4.962101498
step: 2400 | loss: 4.958521749
step: 2410 | loss: 4.954942250
step: 2420 | loss: 4.951362999
step: 2430 | loss: 4.947783997
step: 2440 | loss: 4.944205243
step: 2450 | loss: 4.940626736
step: 2460 | loss: 4.937048476
step: 2470 | loss: 4.933470463
step: 2480 | loss: 4.929892696
step: 2490 | loss: 4.926315175
step: 2500 | loss: 4.922737900
step: 2510 | loss: 4.919160870
step: 2520 | loss: 4.915584084
step: 2530 | loss: 4.912007544
step: 2540 | loss: 4.908431248
step: 2550 | loss: 4.904855197
step: 2560 | loss: 4.901279390
step: 2570 | loss: 4.897703827
step: 2580 | loss: 4.894128509
step: 2590 | loss: 4.890553434
step: 2600 | loss: 4.886978603
step: 2610 | loss: 4.883404015
step: 2620 | loss: 4.879829672
step: 2630 | loss: 4.876255572
step: 2640 | loss: 4.872681716
step: 2650 | loss: 4.869108103
step: 2660 | loss: 4.865534735
step: 2670 | loss: 4.861961610
step: 2680 | loss: 4.858388729
step: 2690 | loss: 4.854816092
step: 2700 | loss: 4.851243699
step: 2710 | loss: 4.847671550
step: 2720 | loss: 4.844099645
step: 2730 | loss: 4.840527984
step: 2740 | loss: 4.836956568
step: 2750 | loss: 4.833385397
step: 2760 | loss: 4.829814471
step: 2770 | loss: 4.826243789
step: 2780 | loss: 4.822673353
step: 2790 | loss: 4.819103162
step: 2800 | loss: 4.815533216
step: 2810 | loss: 4.811963516
step: 2820 | loss: 4.808394062
step: 2830 | loss: 4.804824855
step: 2840 | loss: 4.801255894
step: 2850 | loss: 4.797687179
step: 2860 | loss: 4.794118711
step: 2870 | loss: 4.790550491
step: 2880 | loss: 4.786982518
step: 2890 | loss: 4.783414793
step: 2900 | loss: 4.779847315
step: 2910 | loss: 4.776280086
step: 2920 | loss: 4.772713106
step: 2930 | loss: 4.769146375
step: 2940 | loss: 4.765579892
step: 2950 | loss: 4.762013659
step: 2960 | loss: 4.758447676
step: 2970 | loss: 4.754881943
step: 2980 | loss: 4.751316461
step: 2990 | loss: 4.747751229
step: 3000 | loss: 4.744186249
step: 3010 | loss: 4.740621520
step: 3020 | loss: 4.737057042
step: 3030 | loss: 4.733492817
step: 3040 | loss: 4.729928845
step: 3050 | loss: 4.726365125
step: 3060 | loss: 4.722801658
step: 3070 | loss: 4.719238446
step: 3080 | loss: 4.715675487
step: 3090 | loss: 4.712112782
step: 3100 | loss: 4.708550332
step: 3110 | loss: 4.704988137
step: 3120 | loss: 4.701426198
step: 3130 | loss: 4.697864514
step: 3140 | loss: 4.694303087
step: 3150 | loss: 4.690741916
step: 3160 | loss: 4.687181002
step: 3170 | loss: 4.683620346
step: 3180 | loss: 4.680059948
step: 3190 | loss: 4.676499807
step: 3200 | loss: 4.672939926
step: 3210 | loss: 4.669380303
step: 3220 | loss: 4.665820940
step: 3230 | loss: 4.662261837
step: 3240 | loss: 4.658702994
step: 3250 | loss: 4.655144411
step: 3260 | loss: 4.651586090
step: 3270 | loss: 4.648028031
step: 3280 | loss: 4.644470233
step: 3290 | loss: 4.640912698
step: 3300 | loss: 4.637355425
step: 3310 | loss: 4.633798416
step: 3320 | loss: 4.630241671
step: 3330 | loss: 4.626685189
step: 3340 | loss: 4.623128972
step: 3350 | loss: 4.619573021
step: 3360 | loss: 4.616017334
step: 3370 | loss: 4.612461914
step: 3380 | loss: 4.608906760
step: 3390 | loss: 4.605351873
step: 3400 | loss: 4.601797253
step: 3410 | loss: 4.598242901
step: 3420 | loss: 4.594688817
step: 3430 | loss: 4.591135002
step: 3440 | loss: 4.587581455
step: 3450 | loss: 4.584028179
step: 3460 | loss: 4.580475172
step: 3470 | loss: 4.576922436
step: 3480 | loss: 4.573369971
step: 3490 | loss: 4.569817778
step: 3500 | loss: 4.566265856
step: 3510 | loss: 4.562714207
step: 3520 | loss: 4.559162830
step: 3530 | loss: 4.555611728
step: 3540 | loss: 4.552060898
step: 3550 | loss: 4.548510344
step: 3560 | loss: 4.544960064
step: 3570 | loss: 4.541410059
step: 3580 | loss: 4.537860331
step: 3590 | loss: 4.534310879
step: 3600 | loss: 4.530761703
step: 3610 | loss: 4.527212805
step: 3620 | loss: 4.523664185
step: 3630 | loss: 4.520115843
step: 3640 | loss: 4.516567779
step: 3650 | loss: 4.513019996
step: 3660 | loss: 4.509472492
step: 3670 | loss: 4.505925268
step: 3680 | loss: 4.502378326
step: 3690 | loss: 4.498831664
step: 3700 | loss: 4.495285285
step: 3710 | loss: 4.491739188
step: 3720 | loss: 4.488193374
step: 3730 | loss: 4.484647844
step: 3740 | loss: 4.481102598
step: 3750 | loss: 4.477557636
step: 3760 | loss: 4.474012959
step: 3770 | loss: 4.470468568
step: 3780 | loss: 4.466924463
step: 3790 | loss: 4.463380645
step: 3800 | loss: 4.459837114
step: 3810 | loss: 4.456293871
step: 3820 | loss: 4.452750916
step: 3830 | loss: 4.449208251
step: 3840 | loss: 4.445665874
step: 3850 | loss: 4.442123788
step: 3860 | loss: 4.438581992
step: 3870 | loss: 4.435040487
step: 3880 | loss: 4.431499274
step: 3890 | loss: 4.427958353
step: 3900 | loss: 4.424417724
step: 3910 | loss: 4.420877390
step: 3920 | loss: 4.417337349
step: 3930 | loss: 4.413797602
step: 3940 | loss: 4.410258151
step: 3950 | loss: 4.406718995
step: 3960 | loss: 4.403180135
step: 3970 | loss: 4.399641572
step: 3980 | loss: 4.396103307
step: 3990 | loss: 4.392565339
step: 4000 | loss: 4.389027670
step: 4010 | loss: 4.385490300
step: 4020 | loss: 4.381953230
step: 4030 | loss: 4.378416460
step: 4040 | loss: 4.374879991
step: 4050 | loss: 4.371343824
step: 4060 | loss: 4.367807958
step: 4070 | loss: 4.364272395
step: 4080 | loss: 4.360737136
step: 4090 | loss: 4.357202180
step: 4100 | loss: 4.353667529
step: 4110 | loss: 4.350133183
step: 4120 | loss: 4.346599142
step: 4130 | loss: 4.343065408
step: 4140 | loss: 4.339531981
step: 4150 | loss: 4.335998862
step: 4160 | loss: 4.332466050
step: 4170 | loss: 4.328933548
step: 4180 | loss: 4.325401354
step: 4190 | loss: 4.321869471
step: 4200 | loss: 4.318337899
step: 4210 | loss: 4.314806638
step: 4220 | loss: 4.311275689
step: 4230 | loss: 4.307745052
step: 4240 | loss: 4.304214729
step: 4250 | loss: 4.300684719
step: 4260 | loss: 4.297155024
step: 4270 | loss: 4.293625644
step: 4280 | loss: 4.290096580
step: 4290 | loss: 4.286567832
step: 4300 | loss: 4.283039402
step: 4310 | loss: 4.279511289
step: 4320 | loss: 4.275983494
step: 4330 | loss: 4.272456019
step: 4340 | loss: 4.268928863
step: 4350 | loss: 4.265402028
step: 4360 | loss: 4.261875514
step: 4370 | loss: 4.258349321
step: 4380 | loss: 4.254823451
step: 4390 | loss: 4.251297904
step: 4400 | loss: 4.247772681
step: 4410 | loss: 4.244247782
step: 4420 | loss: 4.240723208
step: 4430 | loss: 4.237198960
step: 4440 | loss: 4.233675039
step: 4450 | loss: 4.230151444
step: 4460 | loss: 4.226628178
step: 4470 | loss: 4.223105240
step: 4480 | loss: 4.219582631
step: 4490 | loss: 4.216060352
step: 4500 | loss: 4.212538404
step: 4510 | loss: 4.209016787
step: 4520 | loss: 4.205495502
step: 4530 | loss: 4.201974549
step: 4540 | loss: 4.198453931
step: 4550 | loss: 4.194933646
step: 4560 | loss: 4.191413696
step: 4570 | loss: 4.187894082
step: 4580 | loss: 4.184374804
step: 4590 | loss: 4.180855863
step: 4600 | loss: 4.177337260
step: 4610 | loss: 4.173818996
step: 4620 | loss: 4.170301070
step: 4630 | loss: 4.166783484
step: 4640 | loss: 4.163266240
step: 4650 | loss: 4.159749336
step: 4660 | loss: 4.156232775
step: 4670 | loss: 4.152716556
step: 4680 | loss: 4.149200681
step: 4690 | loss: 4.145685151
step: 4700 | loss: 4.142169965
step: 4710 | loss: 4.138655126
step: 4720 | loss: 4.135140633
step: 4730 | loss: 4.131626487
step: 4740 | loss: 4.128112689
step: 4750 | loss: 4.124599241
step: 4760 | loss: 4.121086142
step: 4770 | loss: 4.117573393
step: 4780 | loss: 4.114060996
step: 4790 | loss: 4.110548950
step: 4800 | loss: 4.107037257
step: 4810 | loss: 4.103525918
step: 4820 | loss: 4.100014933
step: 4830 | loss: 4.096504303
step: 4840 | loss: 4.092994029
step: 4850 | loss: 4.089484111
step: 4860 | loss: 4.085974551
step: 4870 | loss: 4.082465349
step: 4880 | loss: 4.078956506
step: 4890 | loss: 4.075448023
step: 4900 | loss: 4.071939901
step: 4910 | loss: 4.068432140
step: 4920 | loss: 4.064924741
step: 4930 | loss: 4.061417705
step: 4940 | loss: 4.057911033
step: 4950 | loss: 4.054404725
step: 4960 | loss: 4.050898783
step: 4970 | loss: 4.047393207
step: 4980 | loss: 4.043887998
step: 4990 | loss: 4.040383157
step: 5000 | loss: 4.036878685
step: 5010 | loss: 4.033374582
step: 5020 | loss: 4.029870850
step: 5030 | loss: 4.026367489
step: 5040 | loss: 4.022864500
step: 5050 | loss: 4.019361884
step: 5060 | loss: 4.015859642
step: 5070 | loss: 4.012357774
step: 5080 | loss: 4.008856281
step: 5090 | loss: 4.005355165
step: 5100 | loss: 4.001854426
step: 5110 | loss: 3.998354065
step: 5120 | loss: 3.994854083
step: 5130 | loss: 3.991354480
step: 5140 | loss: 3.987855258
step: 5150 | loss: 3.984356418
step: 5160 | loss: 3.980857959
step: 5170 | loss: 3.977359884
step: 5180 | loss: 3.973862193
step: 5190 | loss: 3.970364887
step: 5200 | loss: 3.966867966
step: 5210 | loss: 3.963371433
step: 5220 | loss: 3.959875287
step: 5230 | loss: 3.956379529
step: 5240 | loss: 3.952884160
step: 5250 | loss: 3.949389182
step: 5260 | loss: 3.945894595
step: 5270 | loss: 3.942400400
step: 5280 | loss: 3.938906598
step: 5290 | loss: 3.935413190
step: 5300 | loss: 3.931920176
step: 5310 | loss: 3.928427559
step: 5320 | loss: 3.924935337
step: 5330 | loss: 3.921443514
step: 5340 | loss: 3.917952088
step: 5350 | loss: 3.914461062
step: 5360 | loss: 3.910970436
step: 5370 | loss: 3.907480212
step: 5380 | loss: 3.903990389
step: 5390 | loss: 3.900500970
step: 5400 | loss: 3.897011955
step: 5410 | loss: 3.893523344
step: 5420 | loss: 3.890035140
step: 5430 | loss: 3.886547342
step: 5440 | loss: 3.883059952
step: 5450 | loss: 3.879572971
step: 5460 | loss: 3.876086399
step: 5470 | loss: 3.872600238
step: 5480 | loss: 3.869114489
step: 5490 | loss: 3.865629152
step: 5500 | loss: 3.862144229
step: 5510 | loss: 3.858659720
step: 5520 | loss: 3.855175627
step: 5530 | loss: 3.851691950
step: 5540 | loss: 3.848208690
step: 5550 | loss: 3.844725849
step: 5560 | loss: 3.841243428
step: 5570 | loss: 3.837761427
step: 5580 | loss: 3.834279847
step: 5590 | loss: 3.830798690
step: 5600 | loss: 3.827317956
step: 5610 | loss: 3.823837646
step: 5620 | loss: 3.820357762
step: 5630 | loss: 3.816878304
step: 5640 | loss: 3.813399274
step: 5650 | loss: 3.809920672
step: 5660 | loss: 3.806442499
step: 5670 | loss: 3.802964757
step: 5680 | loss: 3.799487446
step: 5690 | loss: 3.796010568
step: 5700 | loss: 3.792534124
step: 5710 | loss: 3.789058114
step: 5720 | loss: 3.785582539
step: 5730 | loss: 3.782107402
step: 5740 | loss: 3.778632702
step: 5750 | loss: 3.775158440
step: 5760 | loss: 3.771684619
step: 5770 | loss: 3.768211238
step: 5780 | loss: 3.764738300
step: 5790 | loss: 3.761265804
step: 5800 | loss: 3.757793752
step: 5810 | loss: 3.754322145
step: 5820 | loss: 3.750850985
step: 5830 | loss: 3.747380272
step: 5840 | loss: 3.743910007
step: 5850 | loss: 3.740440191
step: 5860 | loss: 3.736970826
step: 5870 | loss: 3.733501913
step: 5880 | loss: 3.730033452
step: 5890 | loss: 3.726565445
step: 5900 | loss: 3.723097893
step: 5910 | loss: 3.719630796
step: 5920 | loss: 3.716164157
step: 5930 | loss: 3.712697976
step: 5940 | loss: 3.709232254
step: 5950 | loss: 3.705766993
step: 5960 | loss: 3.702302193
step: 5970 | loss: 3.698837855
step: 5980 | loss: 3.695373982
step: 5990 | loss: 3.691910573
step: 6000 | loss: 3.688447630
step: 6010 | loss: 3.684985155
step: 6020 | loss: 3.681523147
step: 6030 | loss: 3.678061609
step: 6040 | loss: 3.674600542
step: 6050 | loss: 3.671139946
step: 6060 | loss: 3.667679823
step: 6070 | loss: 3.664220175
step: 6080 | loss: 3.660761001
step: 6090 | loss: 3.657302304
step: 6100 | loss: 3.653844084
step: 6110 | loss: 3.650386343
step: 6120 | loss: 3.646929081
step: 6130 | loss: 3.643472301
step: 6140 | loss: 3.640016003
step: 6150 | loss: 3.636560188
step: 6160 | loss: 3.633104858
step: 6170 | loss: 3.629650014
step: 6180 | loss: 3.626195657
step: 6190 | loss: 3.622741788
step: 6200 | loss: 3.619288408
step: 6210 | loss: 3.615835519
step: 6220 | loss: 3.612383121
step: 6230 | loss: 3.608931217
step: 6240 | loss: 3.605479806
step: 6250 | loss: 3.602028892
step: 6260 | loss: 3.598578473
step: 6270 | loss: 3.595128553
step: 6280 | loss: 3.591679132
step: 6290 | loss: 3.588230211
step: 6300 | loss: 3.584781792
step: 6310 | loss: 3.581333876
step: 6320 | loss: 3.577886464
step: 6330 | loss: 3.574439557
step: 6340 | loss: 3.570993157
step: 6350 | loss: 3.567547264
step: 6360 | loss: 3.564101881
step: 6370 | loss: 3.560657008
step: 6380 | loss: 3.557212647
step: 6390 | loss: 3.553768799
step: 6400 | loss: 3.550325465
step: 6410 | loss: 3.546882646
step: 6420 | loss: 3.543440344
step: 6430 | loss: 3.539998561
step: 6440 | loss: 3.536557297
step: 6450 | loss: 3.533116553
step: 6460 | loss: 3.529676331
step: 6470 | loss: 3.526236633
step: 6480 | loss: 3.522797459
step: 6490 | loss: 3.519358811
step: 6500 | loss: 3.515920691
step: 6510 | loss: 3.512483099
step: 6520 | loss: 3.509046037
step: 6530 | loss: 3.505609506
step: 6540 | loss: 3.502173507
step: 6550 | loss: 3.498738043
step: 6560 | loss: 3.495303113
step: 6570 | loss: 3.491868721
step: 6580 | loss: 3.488434866
step: 6590 | loss: 3.485001550
step: 6600 | loss: 3.481568775
step: 6610 | loss: 3.478136542
step: 6620 | loss: 3.474704853
step: 6630 | loss: 3.471273708
step: 6640 | loss: 3.467843109
step: 6650 | loss: 3.464413058
step: 6660 | loss: 3.460983556
step: 6670 | loss: 3.457554604
step: 6680 | loss: 3.454126204
step: 6690 | loss: 3.450698356
step: 6700 | loss: 3.447271063
step: 6710 | loss: 3.443844327
step: 6720 | loss: 3.440418147
step: 6730 | loss: 3.436992526
step: 6740 | loss: 3.433567465
step: 6750 | loss: 3.430142966
step: 6760 | loss: 3.426719029
step: 6770 | loss: 3.423295657
step: 6780 | loss: 3.419872851
step: 6790 | loss: 3.416450612
step: 6800 | loss: 3.413028942
step: 6810 | loss: 3.409607842
step: 6820 | loss: 3.406187313
step: 6830 | loss: 3.402767358
step: 6840 | loss: 3.399347977
step: 6850 | loss: 3.395929172
step: 6860 | loss: 3.392510945
step: 6870 | loss: 3.389093296
step: 6880 | loss: 3.385676228
step: 6890 | loss: 3.382259742
step: 6900 | loss: 3.378843840
step: 6910 | loss: 3.375428522
step: 6920 | loss: 3.372013790
step: 6930 | loss: 3.368599647
step: 6940 | loss: 3.365186093
step: 6950 | loss: 3.361773129
step: 6960 | loss: 3.358360759
step: 6970 | loss: 3.354948982
step: 6980 | loss: 3.351537800
step: 6990 | loss: 3.348127216
step: 7000 | loss: 3.344717230
step: 7010 | loss: 3.341307844
step: 7020 | loss: 3.337899060
step: 7030 | loss: 3.334490879
step: 7040 | loss: 3.331083302
step: 7050 | loss: 3.327676332
step: 7060 | loss: 3.324269970
step: 7070 | loss: 3.320864217
step: 7080 | loss: 3.317459075
step: 7090 | loss: 3.314054545
step: 7100 | loss: 3.310650630
step: 7110 | loss: 3.307247330
step: 7120 | loss: 3.303844648
step: 7130 | loss: 3.300442585
step: 7140 | loss: 3.297041142
step: 7150 | loss: 3.293640321
step: 7160 | loss: 3.290240124
step: 7170 | loss: 3.286840552
step: 7180 | loss: 3.283441607
step: 7190 | loss: 3.280043290
step: 7200 | loss: 3.276645604
step: 7210 | loss: 3.273248550
step: 7220 | loss: 3.269852129
step: 7230 | loss: 3.266456343
step: 7240 | loss: 3.263061194
step: 7250 | loss: 3.259666683
step: 7260 | loss: 3.256272812
step: 7270 | loss: 3.252879583
step: 7280 | loss: 3.249486998
step: 7290 | loss: 3.246095057
step: 7300 | loss: 3.242703763
step: 7310 | loss: 3.239313118
step: 7320 | loss: 3.235923122
step: 7330 | loss: 3.232533779
step: 7340 | loss: 3.229145089
step: 7350 | loss: 3.225757054
step: 7360 | loss: 3.222369676
step: 7370 | loss: 3.218982956
step: 7380 | loss: 3.215596897
step: 7390 | loss: 3.212211500
step: 7400 | loss: 3.208826767
step: 7410 | loss: 3.205442699
step: 7420 | loss: 3.202059298
step: 7430 | loss: 3.198676566
step: 7440 | loss: 3.195294505
step: 7450 | loss: 3.191913117
step: 7460 | loss: 3.188532403
step: 7470 | loss: 3.185152364
step: 7480 | loss: 3.181773004
step: 7490 | loss: 3.178394323
step: 7500 | loss: 3.175016323
step: 7510 | loss: 3.171639006
step: 7520 | loss: 3.168262374
step: 7530 | loss: 3.164886429
step: 7540 | loss: 3.161511173
step: 7550 | loss: 3.158136606
step: 7560 | loss: 3.154762732
step: 7570 | loss: 3.151389552
step: 7580 | loss: 3.148017067
step: 7590 | loss: 3.144645280
step: 7600 | loss: 3.141274192
step: 7610 | loss: 3.137903805
step: 7620 | loss: 3.134534121
step: 7630 | loss: 3.131165143
step: 7640 | loss: 3.127796871
step: 7650 | loss: 3.124429307
step: 7660 | loss: 3.121062454
step: 7670 | loss: 3.117696313
step: 7680 | loss: 3.114330887
step: 7690 | loss: 3.110966176
step: 7700 | loss: 3.107602184
step: 7710 | loss: 3.104238911
step: 7720 | loss: 3.100876360
step: 7730 | loss: 3.097514533
step: 7740 | loss: 3.094153431
step: 7750 | loss: 3.090793057
step: 7760 | loss: 3.087433412
step: 7770 | loss: 3.084074498
step: 7780 | loss: 3.080716317
step: 7790 | loss: 3.077358872
step: 7800 | loss: 3.074002164
step: 7810 | loss: 3.070646194
step: 7820 | loss: 3.067290966
step: 7830 | loss: 3.063936480
step: 7840 | loss: 3.060582739
step: 7850 | loss: 3.057229746
step: 7860 | loss: 3.053877501
step: 7870 | loss: 3.050526006
step: 7880 | loss: 3.047175265
step: 7890 | loss: 3.043825278
step: 7900 | loss: 3.040476048
step: 7910 | loss: 3.037127577
step: 7920 | loss: 3.033779866
step: 7930 | loss: 3.030432918
step: 7940 | loss: 3.027086735
step: 7950 | loss: 3.023741319
step: 7960 | loss: 3.020396671
step: 7970 | loss: 3.017052794
step: 7980 | loss: 3.013709690
step: 7990 | loss: 3.010367361
step: 8000 | loss: 3.007025809
step: 8010 | loss: 3.003685036
step: 8020 | loss: 3.000345044
step: 8030 | loss: 2.997005836
step: 8040 | loss: 2.993667412
step: 8050 | loss: 2.990329776
step: 8060 | loss: 2.986992929
step: 8070 | loss: 2.983656873
step: 8080 | loss: 2.980321611
step: 8090 | loss: 2.976987144
step: 8100 | loss: 2.973653476
step: 8110 | loss: 2.970320607
step: 8120 | loss: 2.966988540
step: 8130 | loss: 2.963657277
step: 8140 | loss: 2.960326821
step: 8150 | loss: 2.956997172
step: 8160 | loss: 2.953668334
step: 8170 | loss: 2.950340309
step: 8180 | loss: 2.947013099
step: 8190 | loss: 2.943686705
step: 8200 | loss: 2.940361131
step: 8210 | loss: 2.937036378
step: 8220 | loss: 2.933712448
step: 8230 | loss: 2.930389344
step: 8240 | loss: 2.927067067
step: 8250 | loss: 2.923745621
step: 8260 | loss: 2.920425007
step: 8270 | loss: 2.917105227
step: 8280 | loss: 2.913786284
step: 8290 | loss: 2.910468179
step: 8300 | loss: 2.907150916
step: 8310 | loss: 2.903834496
step: 8320 | loss: 2.900518921
step: 8330 | loss: 2.897204194
step: 8340 | loss: 2.893890317
step: 8350 | loss: 2.890577292
step: 8360 | loss: 2.887265121
step: 8370 | loss: 2.883953807
step: 8380 | loss: 2.880643353
step: 8390 | loss: 2.877333759
step: 8400 | loss: 2.874025029
step: 8410 | loss: 2.870717165
step: 8420 | loss: 2.867410169
step: 8430 | loss: 2.864104043
step: 8440 | loss: 2.860798790
step: 8450 | loss: 2.857494412
step: 8460 | loss: 2.854190911
step: 8470 | loss: 2.850888289
step: 8480 | loss: 2.847586550
step: 8490 | loss: 2.844285695
step: 8500 | loss: 2.840985727
step: 8510 | loss: 2.837686647
step: 8520 | loss: 2.834388459
step: 8530 | loss: 2.831091164
step: 8540 | loss: 2.827794766
step: 8550 | loss: 2.824499266
step: 8560 | loss: 2.821204666
step: 8570 | loss: 2.817910970
step: 8580 | loss: 2.814618179
step: 8590 | loss: 2.811326296
step: 8600 | loss: 2.808035323
step: 8610 | loss: 2.804745263
step: 8620 | loss: 2.801456118
step: 8630 | loss: 2.798167890
step: 8640 | loss: 2.794880583
step: 8650 | loss: 2.791594197
step: 8660 | loss: 2.788308736
step: 8670 | loss: 2.785024203
step: 8680 | loss: 2.781740599
step: 8690 | loss: 2.778457927
step: 8700 | loss: 2.775176190
step: 8710 | loss: 2.771895390
step: 8720 | loss: 2.768615529
step: 8730 | loss: 2.765336610
step: 8740 | loss: 2.762058635
step: 8750 | loss: 2.758781607
step: 8760 | loss: 2.755505528
step: 8770 | loss: 2.752230402
step: 8780 | loss: 2.748956229
step: 8790 | loss: 2.745683014
step: 8800 | loss: 2.742410757
step: 8810 | loss: 2.739139463
step: 8820 | loss: 2.735869133
step: 8830 | loss: 2.732599769
step: 8840 | loss: 2.729331375
step: 8850 | loss: 2.726063954
step: 8860 | loss: 2.722797506
step: 8870 | loss: 2.719532036
step: 8880 | loss: 2.716267545
step: 8890 | loss: 2.713004036
step: 8900 | loss: 2.709741512
step: 8910 | loss: 2.706479975
step: 8920 | loss: 2.703219428
step: 8930 | loss: 2.699959873
step: 8940 | loss: 2.696701314
step: 8950 | loss: 2.693443751
step: 8960 | loss: 2.690187190
step: 8970 | loss: 2.686931630
step: 8980 | loss: 2.683677077
step: 8990 | loss: 2.680423531
step: 9000 | loss: 2.677170996
step: 9010 | loss: 2.673919474
step: 9020 | loss: 2.670668968
step: 9030 | loss: 2.667419480
step: 9040 | loss: 2.664171014
step: 9050 | loss: 2.660923571
step: 9060 | loss: 2.657677155
step: 9070 | loss: 2.654431768
step: 9080 | loss: 2.651187412
step: 9090 | loss: 2.647944091
step: 9100 | loss: 2.644701807
step: 9110 | loss: 2.641460563
step: 9120 | loss: 2.638220361
step: 9130 | loss: 2.634981204
step: 9140 | loss: 2.631743095
step: 9150 | loss: 2.628506037
step: 9160 | loss: 2.625270031
step: 9170 | loss: 2.622035082
step: 9180 | loss: 2.618801191
step: 9190 | loss: 2.615568361
step: 9200 | loss: 2.612336596
step: 9210 | loss: 2.609105897
step: 9220 | loss: 2.605876268
step: 9230 | loss: 2.602647711
step: 9240 | loss: 2.599420228
step: 9250 | loss: 2.596193824
step: 9260 | loss: 2.592968500
step: 9270 | loss: 2.589744259
step: 9280 | loss: 2.586521104
step: 9290 | loss: 2.583299038
step: 9300 | loss: 2.580078063
step: 9310 | loss: 2.576858183
step: 9320 | loss: 2.573639399
step: 9330 | loss: 2.570421715
step: 9340 | loss: 2.567205134
step: 9350 | loss: 2.563989659
step: 9360 | loss: 2.560775291
step: 9370 | loss: 2.557562034
step: 9380 | loss: 2.554349892
step: 9390 | loss: 2.551138865
step: 9400 | loss: 2.547928958
step: 9410 | loss: 2.544720173
step: 9420 | loss: 2.541512514
step: 9430 | loss: 2.538305982
step: 9440 | loss: 2.535100580
step: 9450 | loss: 2.531896312
step: 9460 | loss: 2.528693181
step: 9470 | loss: 2.525491188
step: 9480 | loss: 2.522290338
step: 9490 | loss: 2.519090632
step: 9500 | loss: 2.515892074
step: 9510 | loss: 2.512694667
step: 9520 | loss: 2.509498413
step: 9530 | loss: 2.506303315
step: 9540 | loss: 2.503109376
step: 9550 | loss: 2.499916600
step: 9560 | loss: 2.496724988
step: 9570 | loss: 2.493534543
step: 9580 | loss: 2.490345270
step: 9590 | loss: 2.487157169
step: 9600 | loss: 2.483970246
step: 9610 | loss: 2.480784501
step: 9620 | loss: 2.477599938
step: 9630 | loss: 2.474416561
step: 9640 | loss: 2.471234371
step: 9650 | loss: 2.468053372
step: 9660 | loss: 2.464873567
step: 9670 | loss: 2.461694958
step: 9680 | loss: 2.458517549
step: 9690 | loss: 2.455341342
step: 9700 | loss: 2.452166341
step: 9710 | loss: 2.448992547
step: 9720 | loss: 2.445819965
step: 9730 | loss: 2.442648597
step: 9740 | loss: 2.439478446
step: 9750 | loss: 2.436309515
step: 9760 | loss: 2.433141806
step: 9770 | loss: 2.429975323
step: 9780 | loss: 2.426810069
step: 9790 | loss: 2.423646046
step: 9800 | loss: 2.420483258
step: 9810 | loss: 2.417321708
step: 9820 | loss: 2.414161397
step: 9830 | loss: 2.411002330
step: 9840 | loss: 2.407844509
step: 9850 | loss: 2.404687938
step: 9860 | loss: 2.401532618
step: 9870 | loss: 2.398378554
step: 9880 | loss: 2.395225747
step: 9890 | loss: 2.392074201
step: 9900 | loss: 2.388923920
step: 9910 | loss: 2.385774905
step: 9920 | loss: 2.382627159
step: 9930 | loss: 2.379480687
step: 9940 | loss: 2.376335490
step: 9950 | loss: 2.373191571
step: 9960 | loss: 2.370048934
step: 9970 | loss: 2.366907582
step: 9980 | loss: 2.363767517
step: 9990 | loss: 2.360628742
step: 10000 | loss: 2.357491260
step: 10010 | loss: 2.354355075
step: 10020 | loss: 2.351220189
step: 10030 | loss: 2.348086604
step: 10040 | loss: 2.344954325
step: 10050 | loss: 2.341823354
step: 10060 | loss: 2.338693694
step: 10070 | loss: 2.335565348
step: 10080 | loss: 2.332438318
step: 10090 | loss: 2.329312608
step: 10100 | loss: 2.326188221
step: 10110 | loss: 2.323065159
step: 10120 | loss: 2.319943426
step: 10130 | loss: 2.316823024
step: 10140 | loss: 2.313703957
step: 10150 | loss: 2.310586227
step: 10160 | loss: 2.307469837
step: 10170 | loss: 2.304354790
step: 10180 | loss: 2.301241089
step: 10190 | loss: 2.298128737
step: 10200 | loss: 2.295017737
step: 10210 | loss: 2.291908092
step: 10220 | loss: 2.288799804
step: 10230 | loss: 2.285692877
step: 10240 | loss: 2.282587314
step: 10250 | loss: 2.279483117
step: 10260 | loss: 2.276380289
step: 10270 | loss: 2.273278833
step: 10280 | loss: 2.270178752
step: 10290 | loss: 2.267080050
step: 10300 | loss: 2.263982728
step: 10310 | loss: 2.260886789
step: 10320 | loss: 2.257792237
step: 10330 | loss: 2.254699075
step: 10340 | loss: 2.251607304
step: 10350 | loss: 2.248516929
step: 10360 | loss: 2.245427952
step: 10370 | loss: 2.242340375
step: 10380 | loss: 2.239254202
step: 10390 | loss: 2.236169436
step: 10400 | loss: 2.233086078
step: 10410 | loss: 2.230004133
step: 10420 | loss: 2.226923603
step: 10430 | loss: 2.223844490
step: 10440 | loss: 2.220766798
step: 10450 | loss: 2.217690529
step: 10460 | loss: 2.214615686
step: 10470 | loss: 2.211542272
step: 10480 | loss: 2.208470289
step: 10490 | loss: 2.205399741
step: 10500 | loss: 2.202330629
step: 10510 | loss: 2.199262958
step: 10520 | loss: 2.196196729
step: 10530 | loss: 2.193131946
step: 10540 | loss: 2.190068610
step: 10550 | loss: 2.187006725
step: 10560 | loss: 2.183946294
step: 10570 | loss: 2.180887318
step: 10580 | loss: 2.177829802
step: 10590 | loss: 2.174773747
step: 10600 | loss: 2.171719156
step: 10610 | loss: 2.168666031
step: 10620 | loss: 2.165614376
step: 10630 | loss: 2.162564193
step: 10640 | loss: 2.159515485
step: 10650 | loss: 2.156468254
step: 10660 | loss: 2.153422503
step: 10670 | loss: 2.150378234
step: 10680 | loss: 2.147335450
step: 10690 | loss: 2.144294153
step: 10700 | loss: 2.141254347
step: 10710 | loss: 2.138216033
step: 10720 | loss: 2.135179215
step: 10730 | loss: 2.132143894
step: 10740 | loss: 2.129110073
step: 10750 | loss: 2.126077754
step: 10760 | loss: 2.123046941
step: 10770 | loss: 2.120017635
step: 10780 | loss: 2.116989839
step: 10790 | loss: 2.113963556
step: 10800 | loss: 2.110938787
step: 10810 | loss: 2.107915536
step: 10820 | loss: 2.104893803
step: 10830 | loss: 2.101873593
step: 10840 | loss: 2.098854907
step: 10850 | loss: 2.095837748
step: 10860 | loss: 2.092822117
step: 10870 | loss: 2.089808017
step: 10880 | loss: 2.086795451
step: 10890 | loss: 2.083784420
step: 10900 | loss: 2.080774928
step: 10910 | loss: 2.077766975
step: 10920 | loss: 2.074760565
step: 10930 | loss: 2.071755699
step: 10940 | loss: 2.068752380
step: 10950 | loss: 2.065750609
step: 10960 | loss: 2.062750390
step: 10970 | loss: 2.059751723
step: 10980 | loss: 2.056754611
step: 10990 | loss: 2.053759057
step: 11000 | loss: 2.050765061
step: 11010 | loss: 2.047772627
step: 11020 | loss: 2.044781756
step: 11030 | loss: 2.041792450
step: 11040 | loss: 2.038804711
step: 11050 | loss: 2.035818541
step: 11060 | loss: 2.032833942
step: 11070 | loss: 2.029850916
step: 11080 | loss: 2.026869464
step: 11090 | loss: 2.023889589
step: 11100 | loss: 2.020911292
step: 11110 | loss: 2.017934575
step: 11120 | loss: 2.014959439
step: 11130 | loss: 2.011985887
step: 11140 | loss: 2.009013920
step: 11150 | loss: 2.006043541
step: 11160 | loss: 2.003074749
step: 11170 | loss: 2.000107548
step: 11180 | loss: 1.997141938
step: 11190 | loss: 1.994177921
step: 11200 | loss: 1.991215500
step: 11210 | loss: 1.988254674
step: 11220 | loss: 1.985295446
step: 11230 | loss: 1.982337818
step: 11240 | loss: 1.979381790
step: 11250 | loss: 1.976427364
step: 11260 | loss: 1.973474541
step: 11270 | loss: 1.970523323
step: 11280 | loss: 1.967573710
step: 11290 | loss: 1.964625705
step: 11300 | loss: 1.961679308
step: 11310 | loss: 1.958734521
step: 11320 | loss: 1.955791345
step: 11330 | loss: 1.952849780
step: 11340 | loss: 1.949909828
step: 11350 | loss: 1.946971490
step: 11360 | loss: 1.944034767
step: 11370 | loss: 1.941099660
step: 11380 | loss: 1.938166170
step: 11390 | loss: 1.935234297
step: 11400 | loss: 1.932304043
step: 11410 | loss: 1.929375409
step: 11420 | loss: 1.926448395
step: 11430 | loss: 1.923523001
step: 11440 | loss: 1.920599230
step: 11450 | loss: 1.917677081
step: 11460 | loss: 1.914756555
step: 11470 | loss: 1.911837652
step: 11480 | loss: 1.908920374
step: 11490 | loss: 1.906004720
step: 11500 | loss: 1.903090691
step: 11510 | loss: 1.900178288
step: 11520 | loss: 1.897267510
step: 11530 | loss: 1.894358359
step: 11540 | loss: 1.891450835
step: 11550 | loss: 1.888544937
step: 11560 | loss: 1.885640666
step: 11570 | loss: 1.882738022
step: 11580 | loss: 1.879837006
step: 11590 | loss: 1.876937617
step: 11600 | loss: 1.874039855
step: 11610 | loss: 1.871143720
step: 11620 | loss: 1.868249213
step: 11630 | loss: 1.865356333
step: 11640 | loss: 1.862465079
step: 11650 | loss: 1.859575452
step: 11660 | loss: 1.856687452
step: 11670 | loss: 1.853801078
step: 11680 | loss: 1.850916329
step: 11690 | loss: 1.848033206
step: 11700 | loss: 1.845151708
step: 11710 | loss: 1.842271834
step: 11720 | loss: 1.839393583
step: 11730 | loss: 1.836516956
step: 11740 | loss: 1.833641951
step: 11750 | loss: 1.830768568
step: 11760 | loss: 1.827896805
step: 11770 | loss: 1.825026662
step: 11780 | loss: 1.822158139
step: 11790 | loss: 1.819291234
step: 11800 | loss: 1.816425945
step: 11810 | loss: 1.813562273
step: 11820 | loss: 1.810700215
step: 11830 | loss: 1.807839771
step: 11840 | loss: 1.804980940
step: 11850 | loss: 1.802123720
step: 11860 | loss: 1.799268109
step: 11870 | loss: 1.796414107
step: 11880 | loss: 1.793561711
step: 11890 | loss: 1.790710921
step: 11900 | loss: 1.787861734
step: 11910 | loss: 1.785014149
step: 11920 | loss: 1.782168165
step: 11930 | loss: 1.779323779
step: 11940 | loss: 1.776480989
step: 11950 | loss: 1.773639794
step: 11960 | loss: 1.770800191
step: 11970 | loss: 1.767962179
step: 11980 | loss: 1.765125756
step: 11990 | loss: 1.762290919
step: 12000 | loss: 1.759457665
step: 12010 | loss: 1.756625994
step: 12020 | loss: 1.753795901
step: 12030 | loss: 1.750967386
step: 12040 | loss: 1.748140444
step: 12050 | loss: 1.745315074
step: 12060 | loss: 1.742491274
step: 12070 | loss: 1.739669039
step: 12080 | loss: 1.736848368
step: 12090 | loss: 1.734029258
step: 12100 | loss: 1.731211705
step: 12110 | loss: 1.728395707
step: 12120 | loss: 1.725581261
step: 12130 | loss: 1.722768363
step: 12140 | loss: 1.719957010
step: 12150 | loss: 1.717147199
step: 12160 | loss: 1.714338926
step: 12170 | loss: 1.711532189
step: 12180 | loss: 1.708726983
step: 12190 | loss: 1.705923305
step: 12200 | loss: 1.703121151
step: 12210 | loss: 1.700320518
step: 12220 | loss: 1.697521402
step: 12230 | loss: 1.694723798
step: 12240 | loss: 1.691927704
step: 12250 | loss: 1.689133114
step: 12260 | loss: 1.686340025
step: 12270 | loss: 1.683548433
step: 12280 | loss: 1.680758333
step: 12290 | loss: 1.677969721
step: 12300 | loss: 1.675182592
step: 12310 | loss: 1.672396943
step: 12320 | loss: 1.669612768
step: 12330 | loss: 1.666830063
step: 12340 | loss: 1.664048823
step: 12350 | loss: 1.661269044
step: 12360 | loss: 1.658490719
step: 12370 | loss: 1.655713846
step: 12380 | loss: 1.652938418
step: 12390 | loss: 1.650164430
step: 12400 | loss: 1.647391878
step: 12410 | loss: 1.644620756
step: 12420 | loss: 1.641851058
step: 12430 | loss: 1.639082779
step: 12440 | loss: 1.636315915
step: 12450 | loss: 1.633550458
step: 12460 | loss: 1.630786404
step: 12470 | loss: 1.628023747
step: 12480 | loss: 1.625262480
step: 12490 | loss: 1.622502599
step: 12500 | loss: 1.619744097
step: 12510 | loss: 1.616986969
step: 12520 | loss: 1.614231207
step: 12530 | loss: 1.611476806
step: 12540 | loss: 1.608723760
step: 12550 | loss: 1.605972062
step: 12560 | loss: 1.603221706
step: 12570 | loss: 1.600472686
step: 12580 | loss: 1.597724994
step: 12590 | loss: 1.594978625
step: 12600 | loss: 1.592233571
step: 12610 | loss: 1.589489826
step: 12620 | loss: 1.586747383
step: 12630 | loss: 1.584006235
step: 12640 | loss: 1.581266375
step: 12650 | loss: 1.578527796
step: 12660 | loss: 1.575790491
step: 12670 | loss: 1.573054453
step: 12680 | loss: 1.570319674
step: 12690 | loss: 1.567586147
step: 12700 | loss: 1.564853864
step: 12710 | loss: 1.562122819
step: 12720 | loss: 1.559393003
step: 12730 | loss: 1.556664409
step: 12740 | loss: 1.553937029
step: 12750 | loss: 1.551210856
step: 12760 | loss: 1.548485882
step: 12770 | loss: 1.545762099
step: 12780 | loss: 1.543039498
step: 12790 | loss: 1.540318073
step: 12800 | loss: 1.537597814
step: 12810 | loss: 1.534878714
step: 12820 | loss: 1.532160764
step: 12830 | loss: 1.529443957
step: 12840 | loss: 1.526728284
step: 12850 | loss: 1.524013737
step: 12860 | loss: 1.521300307
step: 12870 | loss: 1.518587985
step: 12880 | loss: 1.515876764
step: 12890 | loss: 1.513166635
step: 12900 | loss: 1.510457588
step: 12910 | loss: 1.507749617
step: 12920 | loss: 1.505042711
step: 12930 | loss: 1.502336861
step: 12940 | loss: 1.499632060
step: 12950 | loss: 1.496928299
step: 12960 | loss: 1.494225567
step: 12970 | loss: 1.491523858
step: 12980 | loss: 1.488823160
step: 12990 | loss: 1.486123466
step: 13000 | loss: 1.483424767
step: 13010 | loss: 1.480727053
step: 13020 | loss: 1.478030315
step: 13030 | loss: 1.475334544
step: 13040 | loss: 1.472639731
step: 13050 | loss: 1.469945866
step: 13060 | loss: 1.467252941
step: 13070 | loss: 1.464560946
step: 13080 | loss: 1.461869872
step: 13090 | loss: 1.459179710
step: 13100 | loss: 1.456490449
step: 13110 | loss: 1.453802082
step: 13120 | loss: 1.451114597
step: 13130 | loss: 1.448427987
step: 13140 | loss: 1.445742241
step: 13150 | loss: 1.443057351
step: 13160 | loss: 1.440373306
step: 13170 | loss: 1.437690098
step: 13180 | loss: 1.435007716
step: 13190 | loss: 1.432326152
step: 13200 | loss: 1.429645395
step: 13210 | loss: 1.426965437
step: 13220 | loss: 1.424286268
step: 13230 | loss: 1.421607879
step: 13240 | loss: 1.418930259
step: 13250 | loss: 1.416253400
step: 13260 | loss: 1.413577292
step: 13270 | loss: 1.410901926
step: 13280 | loss: 1.408227293
step: 13290 | loss: 1.405553382
step: 13300 | loss: 1.402880185
step: 13310 | loss: 1.400207691
step: 13320 | loss: 1.397535893
step: 13330 | loss: 1.394864780
step: 13340 | loss: 1.392194343
step: 13350 | loss: 1.389524572
step: 13360 | loss: 1.386855460
step: 13370 | loss: 1.384186996
step: 13380 | loss: 1.381519170
step: 13390 | loss: 1.378851975
step: 13400 | loss: 1.376185401
step: 13410 | loss: 1.373519438
step: 13420 | loss: 1.370854078
step: 13430 | loss: 1.368189312
step: 13440 | loss: 1.365525131
step: 13450 | loss: 1.362861525
step: 13460 | loss: 1.360198486
step: 13470 | loss: 1.357536005
step: 13480 | loss: 1.354874074
step: 13490 | loss: 1.352212683
step: 13500 | loss: 1.349551824
step: 13510 | loss: 1.346891488
step: 13520 | loss: 1.344231667
step: 13530 | loss: 1.341572353
step: 13540 | loss: 1.338913536
step: 13550 | loss: 1.336255208
step: 13560 | loss: 1.333597362
step: 13570 | loss: 1.330939989
step: 13580 | loss: 1.328283080
step: 13590 | loss: 1.325626627
step: 13600 | loss: 1.322970624
step: 13610 | loss: 1.320315061
step: 13620 | loss: 1.317659930
step: 13630 | loss: 1.315005225
step: 13640 | loss: 1.312350936
step: 13650 | loss: 1.309697057
step: 13660 | loss: 1.307043580
step: 13670 | loss: 1.304390497
step: 13680 | loss: 1.301737801
step: 13690 | loss: 1.299085485
step: 13700 | loss: 1.296433541
step: 13710 | loss: 1.293781962
step: 13720 | loss: 1.291130741
step: 13730 | loss: 1.288479871
step: 13740 | loss: 1.285829346
step: 13750 | loss: 1.283179157
step: 13760 | loss: 1.280529299
step: 13770 | loss: 1.277879765
step: 13780 | loss: 1.275230549
step: 13790 | loss: 1.272581643
step: 13800 | loss: 1.269933042
step: 13810 | loss: 1.267284739
step: 13820 | loss: 1.264636728
step: 13830 | loss: 1.261989002
step: 13840 | loss: 1.259341557
step: 13850 | loss: 1.256694386
step: 13860 | loss: 1.254047482
step: 13870 | loss: 1.251400841
step: 13880 | loss: 1.248754457
step: 13890 | loss: 1.246108324
step: 13900 | loss: 1.243462437
step: 13910 | loss: 1.240816790
step: 13920 | loss: 1.238171378
step: 13930 | loss: 1.235526196
step: 13940 | loss: 1.232881240
step: 13950 | loss: 1.230236503
step: 13960 | loss: 1.227591981
step: 13970 | loss: 1.224947669
step: 13980 | loss: 1.222303563
step: 13990 | loss: 1.219659657
step: 14000 | loss: 1.217015948
step: 14010 | loss: 1.214372431
step: 14020 | loss: 1.211729102
step: 14030 | loss: 1.209085956
step: 14040 | loss: 1.206442989
step: 14050 | loss: 1.203800197
step: 14060 | loss: 1.201157576
step: 14070 | loss: 1.198515123
step: 14080 | loss: 1.195872833
step: 14090 | loss: 1.193230703
step: 14100 | loss: 1.190588728
step: 14110 | loss: 1.187946907
step: 14120 | loss: 1.185305234
step: 14130 | loss: 1.182663707
step: 14140 | loss: 1.180022322
step: 14150 | loss: 1.177381077
step: 14160 | loss: 1.174739967
step: 14170 | loss: 1.172098990
step: 14180 | loss: 1.169458143
step: 14190 | loss: 1.166817423
step: 14200 | loss: 1.164176827
step: 14210 | loss: 1.161536353
step: 14220 | loss: 1.158895997
step: 14230 | loss: 1.156255757
step: 14240 | loss: 1.153615630
step: 14250 | loss: 1.150975615
step: 14260 | loss: 1.148335707
step: 14270 | loss: 1.145695906
step: 14280 | loss: 1.143056209
step: 14290 | loss: 1.140416613
step: 14300 | loss: 1.137777117
step: 14310 | loss: 1.135137718
step: 14320 | loss: 1.132498414
step: 14330 | loss: 1.129859204
step: 14340 | loss: 1.127220084
step: 14350 | loss: 1.124581054
step: 14360 | loss: 1.121942112
step: 14370 | loss: 1.119303256
step: 14380 | loss: 1.116664483
step: 14390 | loss: 1.114025793
step: 14400 | loss: 1.111387184
step: 14410 | loss: 1.108748653
step: 14420 | loss: 1.106110201
step: 14430 | loss: 1.103471824
step: 14440 | loss: 1.100833523
step: 14450 | loss: 1.098195294
step: 14460 | loss: 1.095557138
step: 14470 | loss: 1.092919052
step: 14480 | loss: 1.090281035
step: 14490 | loss: 1.087643087
step: 14500 | loss: 1.085005205
step: 14510 | loss: 1.082367389
step: 14520 | loss: 1.079729638
step: 14530 | loss: 1.077091950
step: 14540 | loss: 1.074454324
step: 14550 | loss: 1.071816760
step: 14560 | loss: 1.069179256
step: 14570 | loss: 1.066541811
step: 14580 | loss: 1.063904425
step: 14590 | loss: 1.061267096
step: 14600 | loss: 1.058629824
step: 14610 | loss: 1.055992607
step: 14620 | loss: 1.053355445
step: 14630 | loss: 1.050718337
step: 14640 | loss: 1.048081283
step: 14650 | loss: 1.045444281
step: 14660 | loss: 1.042807330
step: 14670 | loss: 1.040170431
step: 14680 | loss: 1.037533581
step: 14690 | loss: 1.034896781
step: 14700 | loss: 1.032260030
step: 14710 | loss: 1.029623327
step: 14720 | loss: 1.026986672
step: 14730 | loss: 1.024350064
step: 14740 | loss: 1.021713501
step: 14750 | loss: 1.019076985
step: 14760 | loss: 1.016440513
step: 14770 | loss: 1.013804086
step: 14780 | loss: 1.011167703
step: 14790 | loss: 1.008531363
step: 14800 | loss: 1.005895066
step: 14810 | loss: 1.003258812
step: 14820 | loss: 1.000622599
step: 14830 | loss: 0.997986428
step: 14840 | loss: 0.995350297
step: 14850 | loss: 0.992714207
step: 14860 | loss: 0.990078156
step: 14870 | loss: 0.987442146
step: 14880 | loss: 0.984806174
step: 14890 | loss: 0.982170240
step: 14900 | loss: 0.979534345
step: 14910 | loss: 0.976898487
step: 14920 | loss: 0.974262667
step: 14930 | loss: 0.971626883
step: 14940 | loss: 0.968991136
step: 14950 | loss: 0.966355425
step: 14960 | loss: 0.963719749
step: 14970 | loss: 0.961084109
step: 14980 | loss: 0.958448504
step: 14990 | loss: 0.955812933
step: 15000 | loss: 0.953177396
step: 15010 | loss: 0.950541893
step: 15020 | loss: 0.947906424
step: 15030 | loss: 0.945270987
step: 15040 | loss: 0.942635583
step: 15050 | loss: 0.940000212
step: 15060 | loss: 0.937364872
step: 15070 | loss: 0.934729565
step: 15080 | loss: 0.932094289
step: 15090 | loss: 0.929459043
step: 15100 | loss: 0.926823829
step: 15110 | loss: 0.924188645
step: 15120 | loss: 0.921553491
step: 15130 | loss: 0.918918367
step: 15140 | loss: 0.916283272
step: 15150 | loss: 0.913648206
step: 15160 | loss: 0.911013170
step: 15170 | loss: 0.908378162
step: 15180 | loss: 0.905743182
step: 15190 | loss: 0.903108231
step: 15200 | loss: 0.900473307
step: 15210 | loss: 0.897838410
step: 15220 | loss: 0.895203541
step: 15230 | loss: 0.892568699
step: 15240 | loss: 0.889933883
step: 15250 | loss: 0.887299094
step: 15260 | loss: 0.884664330
step: 15270 | loss: 0.882029593
step: 15280 | loss: 0.879394881
step: 15290 | loss: 0.876760195
step: 15300 | loss: 0.874125533
step: 15310 | loss: 0.871490897
step: 15320 | loss: 0.868856285
step: 15330 | loss: 0.866221697
step: 15340 | loss: 0.863587134
step: 15350 | loss: 0.860952594
step: 15360 | loss: 0.858318078
step: 15370 | loss: 0.855683585
step: 15380 | loss: 0.853049115
step: 15390 | loss: 0.850414669
step: 15400 | loss: 0.847780245
step: 15410 | loss: 0.845145843
step: 15420 | loss: 0.842511464
step: 15430 | loss: 0.839877106
step: 15440 | loss: 0.837242771
step: 15450 | loss: 0.834608457
step: 15460 | loss: 0.831974164
step: 15470 | loss: 0.829339893
step: 15480 | loss: 0.826705642
step: 15490 | loss: 0.824071412
step: 15500 | loss: 0.821437203
step: 15510 | loss: 0.818803014
step: 15520 | loss: 0.816168845
step: 15530 | loss: 0.813534696
step: 15540 | loss: 0.810900566
step: 15550 | loss: 0.808266457
step: 15560 | loss: 0.805632366
step: 15570 | loss: 0.802998295
step: 15580 | loss: 0.800364242
step: 15590 | loss: 0.797730208
step: 15600 | loss: 0.795096193
step: 15610 | loss: 0.792462196
step: 15620 | loss: 0.789828218
step: 15630 | loss: 0.787194257
step: 15640 | loss: 0.784560314
step: 15650 | loss: 0.781926389
step: 15660 | loss: 0.779292481
step: 15670 | loss: 0.776658591
step: 15680 | loss: 0.774024718
step: 15690 | loss: 0.771390861
step: 15700 | loss: 0.768757022
step: 15710 | loss: 0.766123199
step: 15720 | loss: 0.763489393
step: 15730 | loss: 0.760855602
step: 15740 | loss: 0.758221828
step: 15750 | loss: 0.755588070
step: 15760 | loss: 0.752954328
step: 15770 | loss: 0.750320601
step: 15780 | loss: 0.747686890
step: 15790 | loss: 0.745053194
step: 15800 | loss: 0.742419514
step: 15810 | loss: 0.739785848
step: 15820 | loss: 0.737152197
step: 15830 | loss: 0.734518561
step: 15840 | loss: 0.731884940
step: 15850 | loss: 0.729251333
step: 15860 | loss: 0.726617740
step: 15870 | loss: 0.723984162
step: 15880 | loss: 0.721350597
step: 15890 | loss: 0.718717046
step: 15900 | loss: 0.716083509
step: 15910 | loss: 0.713449986
step: 15920 | loss: 0.710816476
step: 15930 | loss: 0.708182980
step: 15940 | loss: 0.705549496
step: 15950 | loss: 0.702916026
step: 15960 | loss: 0.700282569
step: 15970 | loss: 0.697649124
step: 15980 | loss: 0.695015692
step: 15990 | loss: 0.692382273
step: 16000 | loss: 0.689748866
step: 16010 | loss: 0.687115472
step: 16020 | loss: 0.684482089
step: 16030 | loss: 0.681848719
step: 16040 | loss: 0.679215361
step: 16050 | loss: 0.676582014
step: 16060 | loss: 0.673948679
step: 16070 | loss: 0.671315356
step: 16080 | loss: 0.668682044
step: 16090 | loss: 0.666048744
step: 16100 | loss: 0.663415454
step: 16110 | loss: 0.660782176
step: 16120 | loss: 0.658148910
step: 16130 | loss: 0.655515654
step: 16140 | loss: 0.652882408
step: 16150 | loss: 0.650249173
step: 16160 | loss: 0.647615949
step: 16170 | loss: 0.644982735
step: 16180 | loss: 0.642349532
step: 16190 | loss: 0.639716339
step: 16200 | loss: 0.637083156
step: 16210 | loss: 0.634449983
step: 16220 | loss: 0.631816821
step: 16230 | loss: 0.629183668
step: 16240 | loss: 0.626550524
step: 16250 | loss: 0.623917391
step: 16260 | loss: 0.621284267
step: 16270 | loss: 0.618651153
step: 16280 | loss: 0.616018048
step: 16290 | loss: 0.613384952
step: 16300 | loss: 0.610751865
step: 16310 | loss: 0.608118788
step: 16320 | loss: 0.605485720
step: 16330 | loss: 0.602852660
step: 16340 | loss: 0.600219609
step: 16350 | loss: 0.597586568
step: 16360 | loss: 0.594953534
step: 16370 | loss: 0.592320510
step: 16380 | loss: 0.589687494
step: 16390 | loss: 0.587054486
step: 16400 | loss: 0.584421486
step: 16410 | loss: 0.581788495
step: 16420 | loss: 0.579155512
step: 16430 | loss: 0.576522537
step: 16440 | loss: 0.573889570
step: 16450 | loss: 0.571256611
step: 16460 | loss: 0.568623660
step: 16470 | loss: 0.565990717
step: 16480 | loss: 0.563357781
step: 16490 | loss: 0.560724853
step: 16500 | loss: 0.558091932
step: 16510 | loss: 0.555459019
step: 16520 | loss: 0.552826113
step: 16530 | loss: 0.550193215
step: 16540 | loss: 0.547560323
step: 16550 | loss: 0.544927439
step: 16560 | loss: 0.542294562
step: 16570 | loss: 0.539661692
step: 16580 | loss: 0.537028829
step: 16590 | loss: 0.534395973
step: 16600 | loss: 0.531763124
step: 16610 | loss: 0.529130281
step: 16620 | loss: 0.526497453
step: 16630 | loss: 0.523864617
step: 16640 | loss: 0.521231794
step: 16650 | loss: 0.518598977
step: 16660 | loss: 0.515966167
step: 16670 | loss: 0.513333364
step: 16680 | loss: 0.510700566
step: 16690 | loss: 0.508067775
step: 16700 | loss: 0.505434991
step: 16710 | loss: 0.502802212
step: 16720 | loss: 0.500169439
step: 16730 | loss: 0.497536673
step: 16740 | loss: 0.494903912
step: 16750 | loss: 0.492271157
step: 16760 | loss: 0.489638408
step: 16770 | loss: 0.487005664
step: 16780 | loss: 0.484372927
step: 16790 | loss: 0.481740195
step: 16800 | loss: 0.479107468
step: 16810 | loss: 0.476474747
step: 16820 | loss: 0.473842032
step: 16830 | loss: 0.471209322
step: 16840 | loss: 0.468576617
step: 16850 | loss: 0.465943918
step: 16860 | loss: 0.463311223
step: 16870 | loss: 0.460678534
step: 16880 | loss: 0.458045851
step: 16890 | loss: 0.455413172
step: 16900 | loss: 0.452780498
step: 16910 | loss: 0.450147830
step: 16920 | loss: 0.447515166
step: 16930 | loss: 0.444882507
step: 16940 | loss: 0.442249853
step: 16950 | loss: 0.439617204
step: 16960 | loss: 0.436984559
step: 16970 | loss: 0.434351920
step: 16980 | loss: 0.431719285
step: 16990 | loss: 0.429086654
step: 17000 | loss: 0.426454034
step: 17010 | loss: 0.423821408
step: 17020 | loss: 0.421188790
step: 17030 | loss: 0.418556178
step: 17040 | loss: 0.415923570
step: 17050 | loss: 0.413290966
step: 17060 | loss: 0.410658366
step: 17070 | loss: 0.408025771
step: 17080 | loss: 0.405393180
step: 17090 | loss: 0.402760593
step: 17100 | loss: 0.400128011
step: 17110 | loss: 0.397495432
step: 17120 | loss: 0.394862857
step: 17130 | loss: 0.392230287
step: 17140 | loss: 0.389597720
step: 17150 | loss: 0.386965158
step: 17160 | loss: 0.384332599
step: 17170 | loss: 0.381700044
step: 17180 | loss: 0.379067493
step: 17190 | loss: 0.376434946
step: 17200 | loss: 0.373802402
step: 17210 | loss: 0.371169862
step: 17220 | loss: 0.368537326
step: 17230 | loss: 0.365904793
step: 17240 | loss: 0.363272264
step: 17250 | loss: 0.360639739
step: 17260 | loss: 0.358007217
step: 17270 | loss: 0.355374698
step: 17280 | loss: 0.352742183
step: 17290 | loss: 0.350109672
step: 17300 | loss: 0.347477164
step: 17310 | loss: 0.344844659
step: 17320 | loss: 0.342212157
step: 17330 | loss: 0.339579660
step: 17340 | loss: 0.336947164
step: 17350 | loss: 0.334314672
step: 17360 | loss: 0.331682184
step: 17370 | loss: 0.329049698
step: 17380 | loss: 0.326417216
step: 17390 | loss: 0.323784737
step: 17400 | loss: 0.321152260
step: 17410 | loss: 0.318519787
step: 17420 | loss: 0.315887317
step: 17430 | loss: 0.313254850
step: 17440 | loss: 0.310622386
step: 17450 | loss: 0.307989924
step: 17460 | loss: 0.305357466
step: 17470 | loss: 0.302725010
step: 17480 | loss: 0.300092557
step: 17490 | loss: 0.297460107
step: 17500 | loss: 0.294827660
step: 17510 | loss: 0.292195216
step: 17520 | loss: 0.289562774
step: 17530 | loss: 0.286930335
step: 17540 | loss: 0.284297898
step: 17550 | loss: 0.281665464
step: 17560 | loss: 0.279033033
step: 17570 | loss: 0.276400605
step: 17580 | loss: 0.273768188
step: 17590 | loss: 0.271135757
step: 17600 | loss: 0.268503335
step: 17610 | loss: 0.265870916
step: 17620 | loss: 0.263238499
step: 17630 | loss: 0.260606086
step: 17640 | loss: 0.257973674
step: 17650 | loss: 0.255341266
step: 17660 | loss: 0.252708859
step: 17670 | loss: 0.250076455
step: 17680 | loss: 0.247444053
step: 17690 | loss: 0.244811653
step: 17700 | loss: 0.242179256
step: 17710 | loss: 0.239546861
step: 17720 | loss: 0.236914468
step: 17730 | loss: 0.234282077
step: 17740 | loss: 0.231649689
step: 17750 | loss: 0.229017303
step: 17760 | loss: 0.226384918
step: 17770 | loss: 0.223752536
step: 17780 | loss: 0.221120157
step: 17790 | loss: 0.218487785
step: 17800 | loss: 0.215855403
step: 17810 | loss: 0.213223029
step: 17820 | loss: 0.210590657
step: 17830 | loss: 0.207958287
step: 17840 | loss: 0.205325919
step: 17850 | loss: 0.202693553
step: 17860 | loss: 0.200061189
step: 17870 | loss: 0.197428827
step: 17880 | loss: 0.194796467
step: 17890 | loss: 0.192164109
step: 17900 | loss: 0.189531752
step: 17910 | loss: 0.186899397
step: 17920 | loss: 0.184267045
step: 17930 | loss: 0.181634694
step: 17940 | loss: 0.179002344
step: 17950 | loss: 0.176370001
step: 17960 | loss: 0.173737652
step: 17970 | loss: 0.171105308
step: 17980 | loss: 0.168472965
step: 17990 | loss: 0.165840625
step: 18000 | loss: 0.163208286
step: 18010 | loss: 0.160575948
step: 18020 | loss: 0.157943613
step: 18030 | loss: 0.155311279
step: 18040 | loss: 0.152678946
step: 18050 | loss: 0.150046616
step: 18060 | loss: 0.147414286
step: 18070 | loss: 0.144781959
step: 18080 | loss: 0.142149633
step: 18090 | loss: 0.139517308
step: 18100 | loss: 0.136884986
step: 18110 | loss: 0.134252671
step: 18120 | loss: 0.131620344
step: 18130 | loss: 0.128988026
step: 18140 | loss: 0.126355708
step: 18150 | loss: 0.123723392
step: 18160 | loss: 0.121091078
step: 18170 | loss: 0.118458765
step: 18180 | loss: 0.115826454
step: 18190 | loss: 0.113194144
step: 18200 | loss: 0.110561835
step: 18210 | loss: 0.107929528
step: 18220 | loss: 0.105297222
step: 18230 | loss: 0.102664919
step: 18240 | loss: 0.100032619
step: 18250 | loss: 0.097400313
step: 18260 | loss: 0.094768012
step: 18270 | loss: 0.092135712
step: 18280 | loss: 0.089503414
step: 18290 | loss: 0.086871117
step: 18300 | loss: 0.084238822
step: 18310 | loss: 0.081606527
step: 18320 | loss: 0.078974255
step: 18330 | loss: 0.076341948
step: 18340 | loss: 0.073709655
step: 18350 | loss: 0.071077363
step: 18360 | loss: 0.068445074
step: 18370 | loss: 0.065812787
step: 18380 | loss: 0.063180501
step: 18390 | loss: 0.060548239
step: 18400 | loss: 0.057915936
step: 18410 | loss: 0.055283656
step: 18420 | loss: 0.052651371
step: 18430 | loss: 0.050019088
step: 18440 | loss: 0.047386809
step: 18450 | loss: 0.044754580
step: 18460 | loss: 0.042122271
step: 18470 | loss: 0.039489986
step: 18480 | loss: 0.036857703
step: 18490 | loss: 0.034225439
step: 18500 | loss: 0.031593159
step: 18510 | loss: 0.028960931
step: 18520 | loss: 0.026328615
step: 18530 | loss: 0.023696347
step: 18540 | loss: 0.021064082
step: 18550 | loss: 0.018431819
step: 18560 | loss: 0.015799605
step: 18570 | loss: 0.013167359
step: 18580 | loss: 0.010535134
step: 18590 | loss: 0.007903057
step: 18600 | loss: 0.005270710
step: 18610 | loss: 0.002642820
- final loss: 0.000800
-> compiled  owl-opt.0.0.1
-> removed   owl-opt.0.0.1
-> installed owl-opt.0.0.1
Done.
# To update the current shell environment, run: eval $(opam env)
2025-02-24 09:18.13 ---> saved as "24435695003e4cd22a053647e02daa14662ebb7a934c0635d0e0d6eb4b347180"
Job succeeded
2025-02-24 09:18.23: Job succeeded